Performance analysis of energy consumption in machine-type communication

Author(s):  
Yujin Lim

As we know, world is moving into the era of modern digital technology and looking forward tomassive machine type communications (mMTC), whichis an integral part of Internet of Things (IoT). The current technologysupporting mMTC market are not standardized; therefore, there are many short comings from physical layer which includes complexity in deployment, poor reliability, lesser flexibility, security threats and high maintenance cost. To address all these challenges in 5G machine type communication (MTC), the 3rdGeneration Partnership Project (3GPP) in release 13has standardizedNarrowband Internet of Things (NB-IoT) as a better choice in deployment of 5G MTC. NB-IoT has been recommended by ITU as a 5G standard and this recognition of NB-IoT as a core technology in massive machine type communication will impact the telecommunication industry. NB-IoT mainly works on low power wide area networks (LPWAN), which isconsidered as a major technology driver in 5G wireless technologies. Initially,we have compared a spectrum power of NB-IoT with W-Fi ac considering their own bandwidthand specificationsas per 3GPP and IEEE 802.11,respectively.As per analysis, we found many advantages of deploying NB-IoT in 5thgeneration wireless technology including ubiquitous coverage, low power consumption, less transmission power and better interference rejection. Considering thisfact of NB-IoT, we proposedand design a NB-IoT uplink systemusing NPUSCH, UL-SCH and UL-DMRS as per 3GPP 5G specificationsand performance analysis has been carried out


Author(s):  
Xu Chen ◽  
Zhiyong Feng ◽  
Zhiqing Wei ◽  
Ping Zhang ◽  
Xin Yuan

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7336
Author(s):  
Mincheol Paik ◽  
Haneul Ko

Frequent location updates of individual Internet of Things (IoT) devices can cause several problems (e.g., signaling overhead in networks and energy depletion of IoT devices) in massive machine type communication (mMTC) systems. To alleviate these problems, we design a distributed group location update algorithm (DGLU) in which geographically proximate IoT devices determine whether to conduct the location update in a distributed manner. To maximize the accuracy of the locations of IoT devices while maintaining a sufficiently small energy outage probability, we formulate a constrained stochastic game model. We then introduce a best response dynamics-based algorithm to obtain a multi-policy constrained Nash equilibrium. From the evaluation results, it is demonstrated that DGLU can achieve an accuracy of location information that is comparable with that of the individual location update scheme, with a sufficiently small energy outage probability.


Sign in / Sign up

Export Citation Format

Share Document