UL-DMRS Based NB-IoT Uplink System and its Performance Analysis Toward 5G Machine Type Communications

As we know, world is moving into the era of modern digital technology and looking forward tomassive machine type communications (mMTC), whichis an integral part of Internet of Things (IoT). The current technologysupporting mMTC market are not standardized; therefore, there are many short comings from physical layer which includes complexity in deployment, poor reliability, lesser flexibility, security threats and high maintenance cost. To address all these challenges in 5G machine type communication (MTC), the 3rdGeneration Partnership Project (3GPP) in release 13has standardizedNarrowband Internet of Things (NB-IoT) as a better choice in deployment of 5G MTC. NB-IoT has been recommended by ITU as a 5G standard and this recognition of NB-IoT as a core technology in massive machine type communication will impact the telecommunication industry. NB-IoT mainly works on low power wide area networks (LPWAN), which isconsidered as a major technology driver in 5G wireless technologies. Initially,we have compared a spectrum power of NB-IoT with W-Fi ac considering their own bandwidthand specificationsas per 3GPP and IEEE 802.11,respectively.As per analysis, we found many advantages of deploying NB-IoT in 5thgeneration wireless technology including ubiquitous coverage, low power consumption, less transmission power and better interference rejection. Considering thisfact of NB-IoT, we proposedand design a NB-IoT uplink systemusing NPUSCH, UL-SCH and UL-DMRS as per 3GPP 5G specificationsand performance analysis has been carried out

2018 ◽  
Vol 2 (2) ◽  
pp. 37-38
Author(s):  
Tara I. Yahiya

It is expected that the 5G will change the landscape of the communication paradigm as it will offer huge number of device connections, high data rate, evolutionary channel modulation, etc. The 5G predicts to have billions of devices connected through its new scenarios involving Internet of Things (IoT), Machine Type Communications (MTC), Machine- to- Machine Communications (M2M) via the use of different types of devices including but not restricted to smartphones based IP packet.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tongyi Zheng ◽  
Lei Ning ◽  
Qingsong Ye ◽  
Fan Jin

Massive machine-type communications (mMTCs) for Internet of things are being developed thanks to the fifth-generation (5G) wireless systems. Narrowband Internet of things (NB-IoT) is an important communication technology for machine-type communications. It supports many different protocols for communication. The reliability and performance of application layer communication protocols are greatly affected by the retransmission time-out (RTO) algorithm. In order to improve the reliability and performance of machine-type communications, this study proposes a novel RTO algorithm UDP-XGB based on the user datagram protocol (UDP) and NB-IoT. It combines traditional algorithms with machine learning. The simulation results show that real round-trip time (RTT) is close to the RTO, which is obtained by this algorithm, and the reliability and performance of machine-type communications have improved.


2021 ◽  
Author(s):  
Yeduri Sreenivasa Reddy ◽  
Garima Chopra ◽  
Ankit Dubey ◽  
Abhinav Kumar ◽  
Trilochan Panigrahi ◽  
...  

2019 ◽  
Author(s):  
ALOKNATH DE

The vision of 5G is to connect multiple devices and provide meaningful services under a common rooftop, enabling the world populace to communicate to each other. It is estimated that industrial Internet of Things (IoT) alone will comprise of more than 25 billion devices by 2025 [1]-[2]. All these devices will broadly be cateogrized into three main streams of 5G principles: (1) enhanced Mobile Broadband (eMBB), (2) Ultra Reliable Low Latency Communications (URLLC) and (3) massive Machine-Type Communications (mMTC). They come with their own unique requirements that have to be adhered by the network.


Sign in / Sign up

Export Citation Format

Share Document