Prediction of Grades of Ship Collision Accidents Based on Random Forests and Bayesian Networks

Author(s):  
Li Tang ◽  
Yuheng Tang ◽  
Kai Zhang ◽  
Lin Du ◽  
Min Wang
2021 ◽  
Vol 231 ◽  
pp. 108973
Author(s):  
Muhammet Aydin ◽  
Emre Akyuz ◽  
Osman Turan ◽  
Ozcan Arslan

2020 ◽  
Vol 8 (7) ◽  
pp. 485 ◽  
Author(s):  
Tengfei Wang ◽  
Qing Wu ◽  
Mihai A. Diaconeasa ◽  
Xinping Yan ◽  
Ali Mosleh

A ship collision accident is one of the most dangerous and common types of maritime accidents. Traditional probabilistic risk assessment (PRA) of ship collision accidents is a methodology that can be adopted to ensure maritime safety. Nevertheless, a need for better approaches to model human behavior, such as risk identification, communication, and decision-making, has been identified. Such advanced PRA methods require a more explicit way of taking human factors into consideration than the traditional risk assessment methods. Hybrid causal logic (HCL) is an advanced PRA method due to its unique three-level framework that includes event sequence diagrams, fault trees, and Bayesian networks, which makes it suitable for modeling human behavior that is important to ship collision accidents. This paper discusses the applicability of the HCL methodology for the ship collision accident. Firstly, the event sequences of typical ship collision accidents are summarized based on the study of 50 accident investigation reports. Then, fault trees for mechanical failure events and the Bayesian networks for human error events are constructed to analyze the events in a structured way at a more detailed level. Finally, the three main end-state types of ship collision avoidance scenario have been quantified. The result of the probability of a ship collision accident is verified by estimating the annual frequency of collision accidents in the Singapore Strait. Comparing with the historical data, the estimation results are quite near to the real case. By taking advantage of the HCL methodology, the modeling of ship collision scenarios can be carried out at a deep logical level. At the same time, it is possible to combine a detailed analysis of various primary events with a comprehensive analysis at the system level.


2019 ◽  
Author(s):  
Oskar Flygare ◽  
Jesper Enander ◽  
Erik Andersson ◽  
Brjánn Ljótsson ◽  
Volen Z Ivanov ◽  
...  

**Background:** Previous attempts to identify predictors of treatment outcomes in body dysmorphic disorder (BDD) have yielded inconsistent findings. One way to increase precision and clinical utility could be to use machine learning methods, which can incorporate multiple non-linear associations in prediction models. **Methods:** This study used a random forests machine learning approach to test if it is possible to reliably predict remission from BDD in a sample of 88 individuals that had received internet-delivered cognitive behavioral therapy for BDD. The random forest models were compared to traditional logistic regression analyses. **Results:** Random forests correctly identified 78% of participants as remitters or non-remitters at post-treatment. The accuracy of prediction was lower in subsequent follow-ups (68%, 66% and 61% correctly classified at 3-, 12- and 24-month follow-ups, respectively). Depressive symptoms, treatment credibility, working alliance, and initial severity of BDD were among the most important predictors at the beginning of treatment. By contrast, the logistic regression models did not identify consistent and strong predictors of remission from BDD. **Conclusions:** The results provide initial support for the clinical utility of machine learning approaches in the prediction of outcomes of patients with BDD. **Trial registration:** ClinicalTrials.gov ID: NCT02010619.


Sign in / Sign up

Export Citation Format

Share Document