Feature extraction in automatic shape recognition system

Author(s):  
R. Abdul Salarn ◽  
M. Aurelio Rodrigues ◽  
A. Zawawi Hj. Talib ◽  
Putra Sumari
Author(s):  
Manish M. Kayasth ◽  
Bharat C. Patel

The entire character recognition system is logically characterized into different sections like Scanning, Pre-processing, Classification, Processing, and Post-processing. In the targeted system, the scanned image is first passed through pre-processing modules then feature extraction, classification in order to achieve a high recognition rate. This paper describes mainly on Feature extraction and Classification technique. These are the methodologies which play an important role to identify offline handwritten characters specifically in Gujarati language. Feature extraction provides methods with the help of which characters can identify uniquely and with high degree of accuracy. Feature extraction helps to find the shape contained in the pattern. Several techniques are available for feature extraction and classification, however the selection of an appropriate technique based on its input decides the degree of accuracy of recognition. 


2020 ◽  
Vol 5 (2) ◽  
pp. 504
Author(s):  
Matthias Omotayo Oladele ◽  
Temilola Morufat Adepoju ◽  
Olaide ` Abiodun Olatoke ◽  
Oluwaseun Adewale Ojo

Yorùbá language is one of the three main languages that is been spoken in Nigeria. It is a tonal language that carries an accent on the vowel alphabets. There are twenty-five (25) alphabets in Yorùbá language with one of the alphabets a digraph (GB). Due to the difficulty in typing handwritten Yorùbá documents, there is a need to develop a handwritten recognition system that can convert the handwritten texts to digital format. This study discusses the offline Yorùbá handwritten word recognition system (OYHWR) that recognizes Yorùbá uppercase alphabets. Handwritten characters and words were obtained from different writers using the paint application and M708 graphics tablets. The characters were used for training and the words were used for testing. Pre-processing was done on the images and the geometric features of the images were extracted using zoning and gradient-based feature extraction. Geometric features are the different line types that form a particular character such as the vertical, horizontal, and diagonal lines. The geometric features used are the number of horizontal lines, number of vertical lines, number of right diagonal lines, number of left diagonal lines, total length of all horizontal lines, total length of all vertical lines, total length of all right slanting lines, total length of all left-slanting lines and the area of the skeleton. The characters are divided into 9 zones and gradient feature extraction was used to extract the horizontal and vertical components and geometric features in each zone. The words were fed into the support vector machine classifier and the performance was evaluated based on recognition accuracy. Support vector machine is a two-class classifier, hence a multiclass SVM classifier least square support vector machine (LSSVM) was used for word recognition. The one vs one strategy and RBF kernel were used and the recognition accuracy obtained from the tested words ranges between 66.7%, 83.3%, 85.7%, 87.5%, and 100%. The low recognition rate for some of the words could be as a result of the similarity in the extracted features.


2018 ◽  
Author(s):  
I Wayan Agus Surya Darma

Balinese character recognition is a technique to recognize feature or pattern of Balinese character. Feature of Balinese character is generated through feature extraction process. This research using handwritten Balinese character. Feature extraction is a process to obtain the feature of character. In this research, feature extraction process generated semantic and direction feature of handwritten Balinese character. Recognition is using K-Nearest Neighbor algorithm to recognize 81 handwritten Balinese character. The feature of Balinese character images tester are compared with reference features. Result of the recognition system with K=3 and reference=10 is achieved a success rate of 97,53%.


Author(s):  
Basavaraj N Hiremath ◽  
Malini M Patilb

The voice recognition system is about cognizing the signals, by feature extraction and identification of related parameters. The whole process is referred to as voice analytics. The paper aims at analysing and synthesizing the phonetics of voice using a computer program called “PRAAT”. The work carried out in the paper also supports the analysis of voice segmentation labelling, analyse the unique features of voice cues, understanding physics of voice, further the process is carried out to recognize sarcasm. Different unique features identified in the work are, intensity, pitch, formants related to read, speak, interactive and declarative sentences by using principle component analysis.


Author(s):  
MOUMITA GHOSH ◽  
RANADHIR GHOSH ◽  
BRIJESH VERMA

In this paper we propose a fully automated offline handwriting recognition system that incorporates rule based segmentation, contour based feature extraction, neural network validation, a hybrid neural network classifier and a hamming neural network lexicon. The work is based on our earlier promising results in this area using heuristic segmentation and contour based feature extraction. The segmentation is done using many heuristic based set of rules in an iterative manner and finally followed by a neural network validation system. The extraction of feature is performed using both contour and structure based feature extraction algorithm. The classification is performed by a hybrid neural network that incorporates a hybrid combination of evolutionary algorithm and matrix based solution method. Finally a hamming neural network is used as a lexicon. A benchmark dataset from CEDAR has been used for training and testing.


Sign in / Sign up

Export Citation Format

Share Document