Skywriting unmanned aerial vehicle proof-of-concept design

Author(s):  
Dongbin Kim ◽  
Paul Y. Oh
Author(s):  
A. Mayr ◽  
M. Bremer ◽  
M. Rutzinger ◽  
C. Geitner

<p><strong>Abstract.</strong> With this contribution we assess the potential of unmanned aerial vehicle (UAV) based laser scanning for monitoring shallow erosion in Alpine grassland. A 3D point cloud has been acquired by unmanned aerial vehicle laser scanning (ULS) at a test site in the subalpine/alpine elevation zone of the Dolomites (South Tyrol, Italy). To assess its accuracy, this point cloud is compared with (i) differential global navigation satellite system (GNSS) reference measurements and (ii) a terrestrial laser scanning (TLS) point cloud. The ULS point cloud and an airborne laser scanning (ALS) point cloud are rasterized into digital surface models (DSMs) and, as a proof-of-concept for erosion quantification, we calculate the elevation difference between the ULS DSM from 2018 and the ALS DSM from 2010. For contiguous spatial objects of elevation change, the volumetric difference is calculated and a land cover class (<i>bare earth</i>, <i>grassland</i>, <i>trees</i>), derived from the ULS reflectance and RGB colour, is assigned to each change object. In this test, the accuracy and density of the ALS point cloud is mainly limiting the detection of geomorphological changes. Nevertheless, the plausibility of the results is confirmed by geomorphological interpretation and documentation in the field. A total eroded volume of 672&amp;thinsp;m<sup>3</sup> is estimated for the test site (48&amp;thinsp;ha). Such volumetric estimates of erosion over multiple years are a key information for improving sustainable soil management. Based on this proof-of-concept and the accuracy analysis, we conclude that repeated ULS campaigns are a well-suited tool for erosion monitoring in Alpine grassland.</p>


ACTA IMEKO ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 13
Author(s):  
Niels Nauwynck ◽  
Haris Balta ◽  
Geert De Cubber ◽  
Hichem Sahli

<p style="margin: 0cm 0cm 0pt;"> </p><p class="Abstract">This article considers the development of a system to enable the in-flight-launch of one aerial system by another. The article discusses how an optimal release mechanism was developed taking into account the aerodynamics of one specific mothership and child Unmanned Aerial Vehicle (UAV). Furthermore, it discusses the PID-based control concept that was introduced in order to autonomously stabilise the child UAV after being released from the mothership UAV. Finally, the article demonstrates how the concept of a mothership and child UAV combination could be taken advantage of in the context of a search and rescue operation.</p><p style="margin: 0cm 0cm 0pt;"><span lang="EN-US"><span style="font-family: Calibri; font-size: small;"><br /></span></span></p>


Author(s):  
Y Vashi ◽  
U Jai ◽  
R Atluri ◽  
M Sunjii ◽  
Y Kashyap ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document