Multi-UGV Experimental Platform Based on Cloud and Edge Control: Design and Implementation

Author(s):  
Rui Hu ◽  
Yuanqing Xia ◽  
Min Lin ◽  
Shuang Wu
2020 ◽  
Author(s):  
Akif Rahmatillah ◽  
Inten Fauziah Hidayat ◽  
Alfian Pramudita Putra ◽  
Osmalina Nur Rahma ◽  
Suhariningsih

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 101
Author(s):  
Leonardo Acho

The main objective of this paper is to present a position control design to a DC-motor, where the set-point is externally supplied. The controller is conceived by using vibrational control theory and implemented by just processing the time derivative of a Hall-effect sensor signal. Vibrational control is robust against model uncertainties. Hence, for control design, a simple mathematical model of a DC-Motor is invoked. Then, this controller is realized by utilizing analog electronics via operational amplifiers. In the experimental set-up, one extreme of a flexible beam attached to the motor shaft, and with a permanent magnet fixed on the other end, is constructed. Therefore, the control action consists of externally manipulating the flexible beam rotational position by driving a moveable Hall-effect sensor that is located facing the magnet. The experimental platform results in a low-priced device and is useful for teaching control and electronic topics. Experimental results are evidenced to support the main paper contribution.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Emeka Eyisi ◽  
Zhenkai Zhang ◽  
Xenofon Koutsoukos ◽  
Joseph Porter ◽  
Gabor Karsai ◽  
...  

The systematic design of automotive control applications is a challenging problem due to lack of understanding of the complex and tight interactions that often manifest during the integration of components from the control design phase with the components from software generation and deployment on actual platform/network. In order to address this challenge, we present a systematic methodology and a toolchain using well-defined models to integrate components from various design phases with specific emphasis on restricting the complex interactions that manifest during integration such as timing, deployment, and quantization. We present an experimental platform for the evaluation and testing of the design process. The approach is applied to the development of an adaptive cruise control, and we present experimental results that demonstrate the efficacy of the approach.


2011 ◽  
Vol 19 (6) ◽  
pp. 1467-1478 ◽  
Author(s):  
Prashanth Krishnamurthy ◽  
Farshad Khorrami ◽  
Tzer Leei Ng ◽  
Igor Cherepinsky

Author(s):  
George T. Karetsos

Cooperative networking is considered one of the main enablers for achieving enhanced data rates in wireless communications. This is due to the fact that through cooperation the adverse effects of fading can be alleviated significantly. Thus, more reliable communication systems deployments can be devised, and performance enhancements can be achieved. In this chapter, the authors discuss the main aspects of cooperative networking starting from the main historical milestones that shaped the idea. Then they focus on the main mechanisms and techniques that foster cooperation and continue by studying performance metrics for various possible deployments, such as capacity bounds and outage probabilities. Finally, the authors take a more practical viewpoint and discuss aspects related to medium access control design and implementation that can serve as a stepping stone for the widespread deployment of cooperative networking.


2009 ◽  
Vol 42 (13) ◽  
pp. 709-716 ◽  
Author(s):  
Cristian Kunusch ◽  
Paul F. Puleston ◽  
Miguel A. Mayosky ◽  
Maria Serra

2006 ◽  
Vol 39 (6) ◽  
pp. 224-228
Author(s):  
Robert H. Bishop ◽  
Nicholas Lin ◽  
Eduardo Gildin ◽  
Jeanne Sullivan Falcon

Sign in / Sign up

Export Citation Format

Share Document