Lending a Hand

Author(s):  
George T. Karetsos

Cooperative networking is considered one of the main enablers for achieving enhanced data rates in wireless communications. This is due to the fact that through cooperation the adverse effects of fading can be alleviated significantly. Thus, more reliable communication systems deployments can be devised, and performance enhancements can be achieved. In this chapter, the authors discuss the main aspects of cooperative networking starting from the main historical milestones that shaped the idea. Then they focus on the main mechanisms and techniques that foster cooperation and continue by studying performance metrics for various possible deployments, such as capacity bounds and outage probabilities. Finally, the authors take a more practical viewpoint and discuss aspects related to medium access control design and implementation that can serve as a stepping stone for the widespread deployment of cooperative networking.

Author(s):  
Xiaobo Long ◽  
Biplab Sikdar

Numerous efforts are currently under progress to enhance the safety and efficiency of vehicular traffic through intelligent transportation systems. In addition, the growing demand for access to data and information from human users on the go has created the need for advanced vehicle-to-vehicle and vehicleto- roadside communication systems capable of high data rates and amenable to high degrees of node mobility. Vehicular communications and networks are expected to be used for a number of purposes such as for enabling mobile users to transfer data and information from other networks such as the Internet and also for implementing services such as Intersection Decision Systems (IDS), Automated Highway Systems (AHS), and Advanced Vehicle Safety Systems (AVS). In this chapter the authors describe medium access control (MAC) and routing protocols for vehicular networks and the various factors that affect their design and performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Youngbin Na ◽  
Do-Kyeong Ko

AbstractStructured light with spatial degrees of freedom (DoF) is considered a potential solution to address the unprecedented demand for data traffic, but there is a limit to effectively improving the communication capacity by its integer quantization. We propose a data transmission system using fractional mode encoding and deep-learning decoding. Spatial modes of Bessel-Gaussian beams separated by fractional intervals are employed to represent 8-bit symbols. Data encoded by switching phase holograms is efficiently decoded by a deep-learning classifier that only requires the intensity profile of transmitted modes. Our results show that the trained model can simultaneously recognize two independent DoF without any mode sorter and precisely detect small differences between fractional modes. Moreover, the proposed scheme successfully achieves image transmission despite its densely packed mode space. This research will present a new approach to realizing higher data rates for advanced optical communication systems.


Nature Energy ◽  
2021 ◽  
Author(s):  
Yanxin Yao ◽  
Jiafeng Lei ◽  
Yang Shi ◽  
Fei Ai ◽  
Yi-Chun Lu

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
P. G. Kuppusamy ◽  
Ahmed Nabih Zaki Rashed ◽  
P. Jayarajan ◽  
M. R. Thiyagupriyadharsan ◽  
...  

AbstractHigh-speed single-mode fiber-optic communication systems have been presented based on various hybrid multiplexing schemes. Refractive index step and silica-doped germanium percentage parameters are also preserved during their technological boundaries of attention. It is noticed that the connect design parameters suffer more nonlinearity with the number of connects. Two different propagation techniques have been used to investigate the transmitted data rates as a criterion to enhance system performance. The first technique is soliton propagation, where the control parameters lead to equilibrium between the pulse spreading due to dispersion and the pulse shrinking because of nonlinearity. The second technique is the MTDM technique where the parameters are adjusted to lead to minimum dispersion. Two cases are investigated: no dispersion cancellation and dispersion cancellation. The investigations are conducted over an enormous range of the set of control parameters. Thermal effects are considered through three basic quantities, namely the transmission data rates, the dispersion characteristics, and the spectral losses.


Sign in / Sign up

Export Citation Format

Share Document