3D building map reconstruction in dense urban areas by integrating airborne laser point cloud with 2D boundary map

Author(s):  
Mahdi Javanmardi ◽  
Yanlei Gu ◽  
Ehsan Javanmardi ◽  
Li-Ta Hsu ◽  
Shunsuke Kamijo
2017 ◽  
Vol 16 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Petr Hofman ◽  
Markéta Potůčková

<em>The method of building outline extraction based on segmentation of airborne laser scanning data is proposed and tested on a dataset comprising 1,400 buildings typical for residential and industrial urban areas. The algorithm starts with setting a special threshold to separate building from bare earth points and low objects. Next, local planes are fitted to each point using RANSAC and further refined by least squares adjustment. A normal vector is assigned to each point. Similarities among normal vectors are evaluated in order to assemble planar or curved roof segments. Finally, building outlines are formed from detected segments using the a-shapes algorithm and further regularized. The extracted outlines were compared with reference polygons manually derived from the processed laser scanning point cloud and orthoimages. Area-based evaluation of accuracy of the proposed method revealed completeness and correctness of 87 % and 97 %, respectively, for the test dataset. The influence of parameters like number of points per roof segment, complexity of the roof structure, roof type, and overlap with vegetation on accuracy was evaluated and discussed.</em>


Author(s):  
G. Gabara ◽  
P. Sawicki

Abstract. The term “3D building models” is used in relation to the CityGML models and building information modelling. Reconstruction and modelling of 3D building objects in urban areas becomes a common trend and finds a wide spectrum of utilitarian applications. The paper presents the quality assessment of two multifaceted 3D building models, which were obtained from two open-access databases: Polish national Geoportal (accuracy in LOD 2 standard) and Trimble SketchUp Warehouse (accuracy in LOD 2 standard with information about architectural details of façades). The Geoportal 3D models were primary created based on the airborne laser scanning data (density 12 pts/sq. m, elevation accuracy to 0.10 m) collected during Informatic System for Country Protection against extraordinary hazards project. The testing was performed using different validation low-altitude photogrammetric datasets: RIEGL LMS-Q680i airborne laser scanning point cloud (min. density 25 pts/sq. m and height accuracy 0.03 m), and image-based Phase One iXU-RS 1000 point cloud (average accuracy in the horizontal and in the vertical plane is respectively to 0.015 m and 0.030 m). The visual comparison, heat maps with the function of the signed distance, and histograms in predefined ranges were used to evaluate the quality and accuracy of 3D building models. The aspect of error sources that occurred during the modelling process was also discussed.


2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Francisco Mauro ◽  
Andrew T. Hudak ◽  
Patrick A. Fekety ◽  
Bryce Frank ◽  
Hailemariam Temesgen ◽  
...  

Airborne laser scanning (ALS) acquisitions provide piecemeal coverage across the western US, as collections are organized by local managers of individual project areas. In this study, we analyze different factors that can contribute to developing a regional strategy to use information from completed ALS data acquisitions and develop maps of multiple forest attributes in new ALS project areas in a rapid manner. This study is located in Oregon, USA, and analyzes six forest structural attributes for differences between: (1) synthetic (i.e., not-calibrated), and calibrated predictions, (2) parametric linear and semiparametric models, and (3) models developed with predictors computed for point clouds enclosed in the areas where field measurements were taken, i.e., “point-cloud predictors”, and models developed using predictors extracted from pre-rasterized layers, i.e., “rasterized predictors”. Forest structural attributes under consideration are aboveground biomass, downed woody biomass, canopy bulk density, canopy height, canopy base height, and canopy fuel load. Results from our study indicate that semiparametric models perform better than parametric models if no calibration is performed. However, the effect of the calibration is substantial in reducing the bias of parametric models but minimal for the semiparametric models and, once calibrations are performed, differences between parametric and semiparametric models become negligible for all responses. In addition, minimal differences between models using point-cloud predictors and models using rasterized predictors were found. We conclude that the approach that applies semiparametric models and rasterized predictors, which represents the easiest workflow and leads to the most rapid results, is justified with little loss in accuracy or precision even if no calibration is performed.


GEOMATICA ◽  
2011 ◽  
Vol 65 (4) ◽  
pp. 375-385 ◽  
Author(s):  
Haiyan Guan ◽  
Jonathan Li ◽  
Michael A. Chapman

This paper presents an effective approach to integrating airborne lidar data and colour imagery acquired simultaneously for urban mapping. Texture and height information extracted from lidar point cloud is integrated with spectral channels of aerial imagery into an image segmentation process. Then, the segmented polygons are integrated with the extracted geometric features (height information between first- and lastreturn, eigenvalue-based local variation and filtered height data) and spectral features (line segments) into a supervised classifier. The results for two different urban areas in Toronto, Canada, demonstrated that a satisfactory overall accuracy of 84.96% and Kappa of 0.76 were achieved in Scene I, while a building detection rate of 92.11%, comission error of 2.10% and omission error of 9.25% were obtained in Scene II.


Author(s):  
M. A. Dogon-Yaro ◽  
P. Kumar ◽  
A. Abdul Rahman ◽  
G. Buyuksalih

Mapping of trees plays an important role in modern urban spatial data management, as many benefits and applications inherit from this detailed up-to-date data sources. Timely and accurate acquisition of information on the condition of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting trees include ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraints, such as labour intensive field work and a lot of financial requirement which can be overcome by means of integrated LiDAR and digital image datasets. Compared to predominant studies on trees extraction mainly in purely forested areas, this study concentrates on urban areas, which have a high structural complexity with a multitude of different objects. This paper presented a workflow about semi-automated approach for extracting urban trees from integrated processing of airborne based LiDAR point cloud and multispectral digital image datasets over Istanbul city of Turkey. The paper reveals that the integrated datasets is a suitable technology and viable source of information for urban trees management. As a conclusion, therefore, the extracted information provides a snapshot about location, composition and extent of trees in the study area useful to city planners and other decision makers in order to understand how much canopy cover exists, identify new planting, removal, or reforestation opportunities and what locations have the greatest need or potential to maximize benefits of return on investment. It can also help track trends or changes to the urban trees over time and inform future management decisions.


Author(s):  
W. Ostrowski ◽  
M. Pilarska ◽  
J. Charyton ◽  
K. Bakuła

Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term “3D building models” can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.


2012 ◽  
Vol 11 ◽  
pp. 7-13
Author(s):  
Dilli Raj Bhandari

The automatic extraction of the objects from airborne laser scanner data and aerial images has been a topic of research for decades. Airborne laser scanner data are very efficient source for the detection of the buildings. Half of the world population lives in urban/suburban areas, so detailed, accurate and up-to-date building information is of great importance to every resident, government agencies, and private companies. The main objective of this paper is to extract the features for the detection of building using airborne laser scanner data and aerial images. To achieve this objective, a method of integration both LiDAR and aerial images has been explored: thus the advantages of both data sets are utilized to derive the buildings with high accuracy. Airborne laser scanner data contains accurate elevation information in high resolution which is very important feature to detect the elevated objects like buildings and the aerial image has spectral information and this spectral information is an appropriate feature to separate buildings from the trees. Planner region growing segmentation of LiDAR point cloud has been performed and normalized digital surface model (nDSM) is obtained by subtracting DTM from the DSM. Integration of the nDSM, aerial images and the segmented polygon features from the LiDAR point cloud has been carried out. The optimal features for the building detection have been extracted from the integration result. Mean height value of the nDSM, Normalized difference vegetation index (NDVI) and the standard deviation of the nDSM are the effective features. The accuracy assessment of the classification results obtained using the calculated attributes was done. Assessment result yielded an accuracy of almost 92 % explaining the features which are extracted by integrating the two data sets was large extent, effective for the automatic detection of the buildings.


2018 ◽  
Vol 7 (7) ◽  
pp. 285 ◽  
Author(s):  
Wioleta Błaszczak-Bąk ◽  
Zoltan Koppanyi ◽  
Charles Toth

Mobile Laser Scanning (MLS) technology acquires a huge volume of data in a very short time. In many cases, it is reasonable to reduce the size of the dataset with eliminating points in such a way that the datasets, after reduction, meet specific optimization criteria. Various methods exist to decrease the size of point cloud, such as raw data reduction, Digital Terrain Model (DTM) generalization or generation of regular grid. These methods have been successfully applied on data captured from Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS), however, they have not been fully analyzed on data captured by an MLS system. The paper presents our new approach, called the Optimum Single MLS Dataset method (OptD-single-MLS), which is an algorithm for MLS data reduction. The tests were carried out in two variants: (1) for raw sensory measurements and (2) for a georeferenced 3D point cloud. We found that the OptD-single-MLS method provides a good solution in both variants; therefore, the choice of the reduction variant depends only on the user.


Sign in / Sign up

Export Citation Format

Share Document