Muscle synergy of biceps brachii and online classification of upper limb posture

Author(s):  
Liang He ◽  
Pierre A. Mathieu
2019 ◽  
Vol 4 (31) ◽  
pp. eaaw6339 ◽  
Author(s):  
Akira Furui ◽  
Shintaro Eto ◽  
Kosuke Nakagaki ◽  
Kyohei Shimada ◽  
Go Nakamura ◽  
...  

Prosthetic hands are prescribed to patients who have suffered an amputation of the upper limb due to an accident or a disease. This is done to allow patients to regain functionality of their lost hands. Myoelectric prosthetic hands were found to have the possibility of implementing intuitive controls based on operator’s electromyogram (EMG) signals. These controls have been extensively studied and developed. In recent years, development costs and maintainability of prosthetic hands have been improved through three-dimensional (3D) printing technology. However, no previous studies have realized the advantages of EMG-based classification of multiple finger movements in conjunction with the introduction of advanced control mechanisms based on human motion. This paper proposes a 3D-printed myoelectric prosthetic hand and an accompanying control system. The muscle synergy–based motion-determination method and biomimetic impedance control are introduced in the proposed system, enabling the classification of unlearned combined motions and smooth and intuitive finger movements of the prosthetic hand. We evaluate the proposed system through operational experiments performed on six healthy participants and an upper-limb amputee participant. The experimental results demonstrate that our prosthetic hand system can successfully classify both learned single motions and unlearned combined motions from EMG signals with a high degree of accuracy. Furthermore, applications to real-world uses of prosthetic hands are demonstrated through control tasks conducted by the amputee participant.


2005 ◽  
Vol 5 (1) ◽  
pp. 43-56
Author(s):  
Danuta Roman-Liu ◽  
Krzysztof Kȩdzior

The aim of this study was to compare the influence of constant or intermittent load on muscle activation and fatigue. The analysis and assessment of muscular activation and fatigue was based on surface EMG measurements from eight muscles (seven muscles of the right upper limb and trapezius muscle). Two EMG signal parameters were analyzed for each of the experimental conditions distinguished by the value of the external force and the character of the load – constant or intermittent. The amplitude related to its maximum (AMP) and the slope of the regression line between time and median frequency (SMF) were the EMG parameters that were analyzed. The results showed that constant load caused higher muscular fatigue than intermittent load despite the lower value of the external force and lower muscle activation. Results suggest that additional external force might influence muscle activation and fatigue more than upper limb posture. The results of the study support the thesis that all biomechanical factors which influence upper limb load and fatigue (upper limb posture, external force and time sequences) should be considered when work stands and work processes are designed. They also indicate that constant load should be especially avoided.


Hand Surgery ◽  
2015 ◽  
Vol 20 (03) ◽  
pp. 336-342 ◽  
Author(s):  
Michael A. Tonkin ◽  
Kerby C. Oberg

The Oberg, Manske and Tonkin (OMT) Classification of congenital anomalies of the hand and upper limb uses dysmorphological terminology, placing conditions in one of three groups: Malformations, Deformations and Dysplasias. The main group, Malformations, is further subdivided according to whether the whole of the limb is affected or the hand plate alone, and whether the primary insult involves one of the three axes of limb development and patterning or is non-axial. The common surgical diagnoses, such as thumb duplication and thumb hypoplasia, are then placed within this framework. Recently the International Federation of Societies for Surgery of the Hand Scientific Committee for Congenital Conditions approved the OMT Classification as a timely and appropriate replacement of the previously accepted Swanson Classification. This review charts the development of and modifications to the OMT Classification and its current status.


2012 ◽  
Vol 33 (3) ◽  
pp. 702-712 ◽  
Author(s):  
Weilin Lu ◽  
Svetlana Stepchenkova

2017 ◽  
Vol 47 (4) ◽  
pp. 519-532 ◽  
Author(s):  
Javier de la Fuente ◽  
Marc Blasi ◽  
Sílvia Martínez ◽  
Pablo Barceló ◽  
Carlos Cachán ◽  
...  

Hand Surgery ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 243-246 ◽  
Author(s):  
Yuichi Yoshii ◽  
Tomoo Ishii ◽  
Shinsuke Sakai

Necrotising soft tissue infection is a rare and rapid process with devastating consequence. We report one case of necrotising soft tissue infection in a bilateral upper limb with uncommon oral bacteria. Radiological imaging revealed the presence of gas in upper limb soft tissues, and an MRI showed the localised signal changes in the biceps muscle of the right upper arm, and the subcutaneous tissue of the left elbow. The patient was treated with surgical resection of the infected muscle and wide debridement of the subcutaneous tissue. Antibiotics were initiated. The patient recovered immediately without functional deficit. The unique features of this patient were possible to observe in the progression of the necrotising soft tissue infection in the bilateral upper limb with intentional injection of oral bacteria, and the effect of biceps brachii resection in a prime age worker.


2009 ◽  
Vol 106 (2) ◽  
pp. 370-377 ◽  
Author(s):  
Jean-Sébastien Blouin ◽  
Lee D. Walsh ◽  
Peter Nickolls ◽  
Simon C. Gandevia

Control of posture and movement requires control of the output from motoneurons. Motoneurons of human lower limb muscles exhibit sustained, submaximal activity to high-frequency electrical trains, which has been hypothesized to be partly triggered by monosynaptic Ia afferents. The possibility to trigger such behavior in upper limb motoneurons and the potential unique role of Ia afferents to trigger such behavior remain unclear. Subjects ( n = 9) received high-frequency trains of electrical stimuli over biceps brachii and flexor pollicis longus (FPL). We chose to study the FPL muscle because it has weak monosynaptic Ia afferent connectivity and it is involved in fine motor control of the thumb. Two types of stimulus trains (100-Hz bursts and triangular ramps) were tested at five intensities below painful levels. All subjects exhibited enhanced torque in biceps and FPL muscles after both types of high-frequency train. Torques also persisted after stimulation, particularly for the highest stimulus intensity. To separate the evoked torques that resulted from a peripheral mechanism (e.g., muscle potentiation) and that which resulted from a central origin, we studied FPL responses to high-frequency trains after complete combined nerve blocks of the median and radial nerves ( n = 2). During the blocks, high-frequency trains over the FPL did not yield torque enhancements or persisting torques. These results suggest that enhanced contractions of central origin can be elicited in motoneurons innervating the upper limb, despite weak monosynaptic Ia connections for FPL. Their presence in a recently evolved human muscle (FPL) indicates that these enhanced contractions may have a broad role in controlling tonic postural outputs of hand muscles and that they may be available even for fine motor activities involving the thumb.


Sign in / Sign up

Export Citation Format

Share Document