Enhancement of wireless channel performance using MIMO system in underground mine gallery

Author(s):  
Ismail Ben Mabrouk ◽  
Larbi Talbi ◽  
Mourad Nedil
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Gustavo Anjos ◽  
Daniel Castanheira ◽  
Adão Silva ◽  
Atílio Gameiro ◽  
Marco Gomes ◽  
...  

The exploration of the physical layer characteristics of the wireless channel is currently the object of intensive research in order to develop advanced secrecy schemes that can protect information against eavesdropping attacks. Following this line of work, in this manuscript we consider a massive MIMO system and jointly design the channel precoder and security scheme. By doing that we ensure that the precoding operation does not reduce the degree of secrecy provided by the security scheme. The fundamental working principle of the proposed technique is to apply selective random rotations in the transmitted signal at the antenna level in order to achieve a compromise between legitimate and eavesdropper channel capacities. These rotations use the phase of the reciprocal wireless channel as a common random source between the transmitter and the intended receiver. To assess the security performance, the proposed joint scheme is compared with a recently proposed approach for massive MIMO systems. The results show that, with the proposed joint design, the number of antenna elements does not influence the eavesdropper channel capacity, which is proved to be equal to zero, in contrast to previous approaches.


Author(s):  
Akhil Gupta ◽  
Shiwani Dogra ◽  
Ishfaq Bashir Sofi

Background & Objective: In this paper, Multiple Input Multiple Output (MIMO) has been examined in wireless medium by utilizing Spatial Multiplexing procedure for the computation of the Bit Error Rate (BER). MIMO enhance the throughput in wireless medium. Spatial multiplexing builds the limit and link reliability of the MIMO frameworks. Methods: The BER execution of DPSK, Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) in MIMO frameworks in Rayleigh multipath channel is analyzed. Zero forcing algorithms is utilized as a detection technique. A comparison of these modulations is additionally done in Rayleigh fading channel. Conclusion: The execution of transmission modes are assessed by figuring the likelihood of Bit Error Rate (BER) vs. the Signal Noise Ratio (SNR) under the every now and utilized four wireless channel models (Rayleigh, Dent, Jake’s and Okumura).


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Aditya K. Jagannatham ◽  
Bhaskar D. Rao

We present a study of semiblind (SB) estimation for a frequency-selective (FS) multiple-input multiple-output (MIMO) wireless channel using a novel Fisher-information matrix (FIM) based approach. The frequency selective MIMO system is modeled as a matrix finite impulse response (FIR) channel, and the transmitted data symbols comprise of a sequence of pilot symbols followed by the unknown blind symbols. It is demonstrated that the FIM for this system can be expressed as the sum of the blind FIM Jb and pilot FIM Jp. We present a key result relating the rank of the FIM to the number of blindly identifiable parameters. We then present a novel maximum-likelihood (ML) scheme for the semiblind estimation of the MIMO FIR channel. We derive the Cramer-Rao Bound (CRB) for the semiblind scheme. It is observed that the semi-blind MSE of estimation of the MIMO FIR channel is potentially much lower compared to an exclusively pilot-based scheme. Finally, we derive a lower bound for the minimum number of pilot symbols necessary for the estimation of an FIR MIMO channel for any general semi-blind scheme. Simulation results are presented to augment the above analysis.


2012 ◽  
Vol 11 ◽  
pp. 830-833 ◽  
Author(s):  
Ismail Ben Mabrouk ◽  
Larbi Talbi ◽  
Mourad Nedil

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4021
Author(s):  
Kaihua Luo ◽  
Xiaoping Zhou ◽  
Bin Wang ◽  
Jifeng Huang ◽  
Haichao Liu

Efficient vehicle-to-everything (V2X) communications improve traffic safety, enable autonomous driving, and help to reduce environmental impacts. To achieve these objectives, accurate channel estimation in highly mobile scenarios becomes necessary. However, in the V2X millimeter-wave massive MIMO system, the high mobility of vehicles leads to the rapid time-varying of the wireless channel and results in the existing static channel estimation algorithms no longer applicable. In this paper, we propose a sparse Bayes tensor and DOA tracking inspired channel estimation for V2X millimeter wave massive MIMO system. Specifically, by exploiting the sparse scattering characteristics of the channel, we transform the channel estimation into a sparse recovery problem. In order to reduce the influence of quantization errors, both the receiving and transmitting angle grids should have super-resolution. We obtain the measurement matrix to increase the resolution of the redundant dictionary. Furthermore, we take the low-rank characteristics of the received signals into consideration rather than singly using the traditional sparse prior. Motivated by the sparse Bayes tensor, a direction of arrival (DOA) tracking method is developed to acquire the DOA at the next moment, which equals the sum of the DOA at the previous moment and the offset. The obtained DOA is expected to provide a significant angle information update for tracking fast time-varying vehicular channels. The proposed approach is evaluated over the different speeds of the vehicle scenarios and compared to the other methods. Simulation results validated the theoretical analysis and demonstrate that the proposed solution outperforms a number of state-of-the-art researches.


Author(s):  
Mohammed Salemdeeb ◽  
Ammar Abu-Hudrouss

Fading in a wireless channel has negative effects on the performance of communication systems. Bell Laboratories layered space-time (BLAST) has been used to get a high data rate while space-time block codes (STBC) have been used to get a low bit error rate (BER) performance. Under deep faded channels, hybrid BLAST-STBC systems are considered as a trade-off between BLAST and STBC systems. By exploiting the benefits of both systems, a new method to represent a 4 × 4 multiple-input and multiple-output (MIMO) system is proposed and studied, in which the transmission process is carried out adaptively between both 4 × 4 VBLAST, Quasi-Orthogonal STBC (QOSTBC) and Hybrid systems according to the transmit links state. The proposed adaptive switching hybrid system (ASHS) reduces the total transmitted power, achieves the maximum throughput by obtaining the best BER. An adaptive switching transmission scheme using the strategy of measuring the transmit links fading is investigated as well. The simulated results are obtained in an environment of a 4 × 4 MIMO system using MATLAB platform where the total transmitting power is normalized to unity. The detections are done using the maximum likelihood (ML) receiver. The proposed ASHS system shows a lot of advantages such as maximum throughput is obtained in bad channel states, no additional transmit power is needed and no additional bandwidth is needed. Finally, under deep fading condition, the proposed ASHS transmission scheme obtains the best BER, reduces wasting the total transmitted power, achieves the maximum throughput and obtains the best BER.


Sign in / Sign up

Export Citation Format

Share Document