Prediction Of Vertical Wind Speed By Artificial Neural Network For Wind Energy Application In Algeria

Author(s):  
S. Adjiri ◽  
H. Nedjari-Daaou ◽  
S. M. Boudia
2015 ◽  
Vol 16 (6) ◽  
pp. 1135-1144

<div> <p>Wind Energy is one of the important sources of renewable energy. There is a need to prepare the availability of wind energy in the area where there is no measured wind speed data. For this type of situation, it seems to be necessary to predict the wind energy potential using such as wind speed using artificial neural network (ANN) method. Soft computing techniques are widely used now days in the study of wind energy potential estimation. In this study the wind energy potential between neighborhood meteorological tower stations is predicted using Artificial Neural Network technique. One of the most suitable areas of Tamil Nadu for wind power generation is some locations in the districts of Tirunelveli, Thoothukudi, Kanyakumari, Theni, Coimbatore, and Dindigul. Along the southeast coastline of Tamil Nadu there are no valleys and mountains besides the mountains are situated away from the sea coast in many regions. Therefore, these regions are exposed to northerly winds that are not as strong as the southerly winds.</p> </div> <p>&nbsp;</p>


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3350 ◽  
Author(s):  
Kittipong Kasantikul ◽  
Dongkai Yang ◽  
Qiang Wang ◽  
Aung Lwin

Oceanographic remote sensing, which is based on the sensitivity of reflected signals from the Global Navigation Satellite Systems (GNSS), so-called GNSS-Reflectometry (GNSS-R), is very useful for the observation of ocean wind speed. Wind speed estimation over the ocean is the core factor in maritime transportation management and the study of climate change. The main concept of the GNSS-R technique is using the different times between the reflected and the direct signals to measure the wind speed and wind direction. Accordingly, this research proposes a novel technique for wind speed estimation involving the integration of an artificial neural network and the particle filter based on a theoretical model. Moreover, particle swarm optimization was applied to find the optimal weight and bias of the artificial neural network, in order to improve the accuracy of the estimation result. The observation dataset of the reflected signal information from BeiDou Geostationary Earth Orbit (GEO) satellite number 4 was used as an input for the estimation model. The data consisted of two phases with I and Q components. Two periods of BeiDou data were selected, the first period was from 3 to 8 August 2013 and the second period was from 12 to 14 August 2013, which corresponded to events from the typhoon Utor. The in situ wind speed measurement collected from the buoy station was used to validate the results. A coastal experiment was conducted at the Yangjiang site located in the South China Sea. The results show the ability of the proposed technique to estimate wind speed with a root mean square error of approximately 1.9 m/s.


2020 ◽  
Vol 93 (1-4) ◽  
pp. 31-38
Author(s):  
Bilal Boudjellal ◽  
Tarak Benslimane

The purpose of this study is to improve the control performance of a Doubly Fed Induction Generator (DFIG) in a Wind Energy Conversion System (WECS) by using both of the conventional Proportional-Integral (PI) controllers and an Artificial Neural Network (ANN) based controllers. The rotor-side converter (RSC) voltages are controlled using a stator flux oriented control (FOC) to achieve an independent control of the active and reactive powers, exchanged between the stator of the DFIG and the power grid. Afterward, the PI controllers of the FOC are replaced with two ANN based controllers. A Maximum Power Point Tracking (MPPT) control strategy is necessary in order to extract the maximum power from the of wind energy system. A simulation model was carried out in MATLAB environment under different scenarios. The obtained results demonstrate the efficiency of the proposed ANN control strategy.


Author(s):  
Arilson F. G. Ferreira ◽  
Anderson P. de Aragao ◽  
Necio de L. Veras ◽  
Ricardo A. L. Rabelo ◽  
Petar Solic

2019 ◽  
Vol 20 (3) ◽  
pp. 800-808
Author(s):  
G. T. Patle ◽  
M. Chettri ◽  
D. Jhajharia

Abstract Accurate estimation of evaporation from agricultural fields and water bodies is needed for the efficient utilisation and management of water resources at the watershed and regional scale. In this study, multiple linear regression (MLR) and artificial neural network (ANN) techniques are used for the estimation of monthly pan evaporation. The modelling approach includes the various combination of six measured climate parameters consisting of maximum and minimum air temperature, maximum and minimum relative humidity, sunshine hours and wind speed of two stations, namely Gangtok in Sikkim and Imphal in the Manipur states of the northeast hill region of India. Average monthly evaporation varies from 0.62 to 2.68 mm/day for Gangtok, whereas it varies from 1.4 to 4.3 mm/day for Imphal during January and June, respectively. Performance of the developed MLR and ANN models was compared using statistical indices such as coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) with measured pan evaporation values. Correlation analysis revealed that temperature, wind speed and sunshine hour had positive correlation, whereas relative humidity had a negative correlation with pan evaporation. Results showed a slightly better performance of the ANN models over the MLR models for the prediction of monthly pan evaporation in the study area.


Sign in / Sign up

Export Citation Format

Share Document