Data security analysis of marekt-oriented clouds

Author(s):  
Munwar Ali Zardari ◽  
Low Tang Jung ◽  
M. Nordin B Zakaria
2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

Secure and efficient authentication mechanism becomes a major concern in cloud computing due to the data sharing among cloud server and user through internet. This paper proposed an efficient Hashing, Encryption and Chebyshev HEC-based authentication in order to provide security among data communication. With the formal and the informal security analysis, it has been demonstrated that the proposed HEC-based authentication approach provides data security more efficiently in cloud. The proposed approach amplifies the security issues and ensures the privacy and data security to the cloud user. Moreover, the proposed HEC-based authentication approach makes the system more robust and secured and has been verified with multiple scenarios. However, the proposed authentication approach requires less computational time and memory than the existing authentication techniques. The performance revealed by the proposed HEC-based authentication approach is measured in terms of computation time and memory as 26ms, and 1878bytes for 100Kb data size, respectively.


Author(s):  
Tianyi Li ◽  
Gregorio Convertino ◽  
Ranjeet Kumar Tayi ◽  
Shima Kazerooni ◽  
Gary Patterson

2021 ◽  
Vol 1 (1) ◽  
pp. 47-58
Author(s):  
S. Benzegane ◽  
S. Sadoudi ◽  
M. Djeddou

In this paper, we present a software development of multimedia streaming encryption using Hyperchaos-based Random Number Generator (HRNG) implemented in C#. The software implements and uses the proposed HRNG to generate keystream for encrypting and decrypting real-time multimedia data. The used HRNG consists of Hyperchaos Lorenz system which produces four signal outputs taken as encryption keys. The generated keys are characterized by high quality randomness which is confirmed by passing standard NIST statistical tests. Security analysis of the proposed encryption scheme through image and audio security analysis confirms its robustness against different kind of attacks.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250992
Author(s):  
Kennedy Edemacu ◽  
Beakcheol Jang ◽  
Jong Wook Kim

With the rapid advancement of information and communication technologies, there is a growing transformation of healthcare systems. A patient’s health data can now be centrally stored in the cloud and be shared with multiple healthcare stakeholders, enabling the patient to be collaboratively treated by more than one healthcare institution. However, several issues, including data security and privacy concerns still remain unresolved. Ciphertext-policy attribute-based encryption (CP-ABE) has shown promising potential in providing data security and privacy in cloud-based systems. Nevertheless, the conventional CP-ABE scheme is inadequate for direct adoption in a collaborative ehealth system. For one, its expressiveness is limited as it is based on a monotonic access structure. Second, it lacks an attribute/user revocation mechanism. Third, the computational burden on both the data owner and data users is linear with the number of attributes in the ciphertext. To address these inadequacies, we propose CESCR, a CP-ABE for efficient and secure sharing of health data in collaborative ehealth systems with immediate and efficient attribute/user revocation. The CESCR scheme is unbounded, i.e., it does not bind the size of the attribute universe to the security parameter, it is based on the expressive and non-restrictive ordered binary decision diagram (OBDD) access structure, and it securely outsources the computationally demanding attribute operations of both encryption and decryption processes without requiring a dummy attribute. Security analysis shows that the CESCR scheme is secure in the selective model. Simulation and performance comparisons with related schemes also demonstrate that the CESCR scheme is expressive and efficient.


2020 ◽  
Vol 5 (19) ◽  
pp. 26-31
Author(s):  
Md. Farooque ◽  
Kailash Patidar ◽  
Rishi Kushwah ◽  
Gaurav Saxena

In this paper an efficient security mechanism has been adopted for the cloud computing environment. It also provides an extendibility of cloud computing environment with big data and Internet of Things. AES-256 and RC6 with two round key generation have been applied for data and application security. Three-way security mechanism has been adopted and implemented. It is user to user (U to U) for data sharing and inter cloud communication. Then user to cloud (U to C) for data security management for application level hierarchy of cloud. Finally, cloud to user (C to U) for the cloud data protection. The security analysis has been tested with different iterations and rounds and it is found to be satisfactory.


Sign in / Sign up

Export Citation Format

Share Document