Design of sliding-mode controller for anti-swing control of overhead cranes

Author(s):  
Kuo-Kai Shyu ◽  
Cheng-Lung Jen ◽  
Li-Jen Shang
Author(s):  
Qingrong Chen ◽  
Wenming Cheng ◽  
Jiahui Liu ◽  
Run Du

In this paper, a novel sliding mode controller which requires partial state feedback is proposed for double-pendulum overhead cranes subject to unknown payload parameters and unknown external disturbances. Firstly, it is theoretically proved that the hook and payload tend to their respective equilibrium points concurrently. Secondly, a decoupling transformation is performed on the original nonlinear dynamics of double-pendulum overhead cranes. The novel sliding mode controller that does not require the prior information and motion signals of the payload is designed based on the decoupled nonlinear dynamics. Then, the asymptotic stability of the equilibrium point of double-pendulum overhead cranes is proved by rigorous analysis. Finally, several simulations are conducted to validate the effectiveness and robustness of the proposed controller.


Author(s):  
Imen Saidi ◽  
Asma Hammami

Introduction: In this paper, a robust sliding mode controller is developed to control an orthosis used for rehabilitation of lower limb. Materials and Methods: The orthosis is defined as a mechanical device intended to physically assist a human subject for the realization of his movements. It should be adapted to the human morphology, interacting in harmony with its movements, and providing the necessary efforts along the limbs to which it is attached. Results: The application of the sliding mode control to the Shank-orthosis system shows satisfactory dynamic response and tracking performances. Conclusion: In fact, position tracking and speed tracking errors are very small. The sliding mode controller effectively absorbs disturbance and parametric variations, hence the efficiency and robustness of our applied control.


Sign in / Sign up

Export Citation Format

Share Document