A High Step-up DC-DC Converter Based on the Voltage Lift Technique for Renewable Energy Applications

2021 ◽  
Vol 13 (19) ◽  
pp. 11059
Author(s):  
Shahrukh Khan ◽  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
...  

High gain DC-DC converters are getting popular due to the increased use of renewable energy sources (RESs). Common ground between the input and output, low voltage stress across power switches and high voltage gain at lower duty ratios are desirable features required in any high gain DC-DC converter. DC-DC converters are widely used in DC microgrids to supply power to meet local demands. In this work, a high step-up DC-DC converter is proposed based on the voltage lift (VL) technique using a single power switch. The proposed converter has a voltage gain greater than a traditional boost converter (TBC) and Traditional quadratic boost converter (TQBC). The effect of inductor parasitic resistances on the voltage gain of the converter is discussed. The losses occurring in various components are calculated using PLECS software. To confirm the performance of the converter, a hardware prototype of 200 W is developed in the laboratory. The simulation and hardware results are presented to determine the performance of the converter in both open-loop and closed-loop conditions. In closed-loop operation, a PI controller is used to maintain a constant output voltage when the load or input voltage is changed.

2019 ◽  
Vol 25 (3) ◽  
pp. 50-55 ◽  
Author(s):  
Davood Ghaderi ◽  
Gokay Bayrak

Renewable Energy Sources (RES) including full cells, wind turbines, and photovoltaic panels, widely are spreading. Among all the renewable energy sources, solar power generation system tops the list. The first choice is the boost converter when the voltage step-up is the issue. But the most important subject is applying an efficient structure with high gain, cheap and quick controller circuit. Our proposed cascaded boost converter is one of such converters which consists of several cheap components such as diode, inductor, capacitor and power switch, which has same switching frequency and phase shift in comparison with conventional boost converters. In comparison with the classic cascaded boost converter, the voltage gain for the proposed structure is very high and by forming a preamplifier layer, for a duty cycle of 80 % by adding only two diodes, one inductor, and one capacitor for the second block, voltage gain is increased by 5 times compared to the classic boost converter. The proposed method provides the increased output voltage along with the duty cycle. The projected strategy has been verified with the help of Matlab/Simulink. Also, a hardware implementation of the proposed converter has been done around 200 W by applying a Jiangyin HR-200W-24V type solar panel.


Author(s):  
Mamidala Hemanth Reddy

The output voltage from the sustainable energy like photovoltaic (PV) arrays and fuel cells will be at less amount of level. This must be boost considerably for practical utilization or grid connection. A conventional boost converter will provides low voltage gain while Quadratic boost converter (QBC) provides high voltage gain. QBC is able to regulate the output voltage and the choice of second inductor can give its current as positive and whereas for boost increases in the voltage will not able to regulate the output voltage. It has low semiconductor device voltage stress and switch usage factor is high. Analysis and design modeling of Quadratic boost converter is proposed in this paper. A power with 50 W is developed with 18 V input voltage and yield 70 V output voltage and the outcomes are approved through recreation utilizing MATLAB/SIMULINK MODEL.


Author(s):  
R. Birundha ◽  
Dr. P. Maruthapandi

A new single switch solar powered high gain step-up DC-DC converter is proposed for plug-in hybrid battery charger in Electric vehicle (EV). The proposed topology utilizes a L2C3D2network to obtain high voltage gain and reduce the voltage stress on the power switch. Additionally, the proposed converter has a universal input voltage in order to suit the soft output characteristics of the fuel cell. The fuel cell has a relatively low output voltage and high current, and it has soft output characteristics as its output voltage drops as the output current increases. Therefore, the fuel cell cannot be directly interfaced to the dc-link bus (400V) of the inverter inside the EV. This dc-dc converter has a universal input voltage feature with wide voltage gain range to suit the soft output characteristics of the fuel cell. Additionally, this dc-dc converter has to have low input current ripple to prolong the life time of the fuel /solar cell, and a common ground between its input and output ports to avoid additional EMI and maintenance safety problem. This control strategy is modelled and simulated using MATLAB -Simulink. A proto type experimental has been fabricated and tested. The experimental analysis was done and the results are in line with the simulation results.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1480 ◽  
Author(s):  
Javier Loranca-Coutiño ◽  
Carlos A. Villarreal-Hernandez ◽  
Jonathan C. Mayo-Maldonado ◽  
Jesús E. Valdez-Resendiz ◽  
Adolfo R. Lopez-Nuñez ◽  
...  

This work presents a power-electronics based system for renewable energy applications, the system is driven with an only one switch quadratic type boost converter, the discussed converter is based on a stack of switching stages which provide a large voltage gain, a desirable feature for fuel cell generation systems, the converters gain function is the quadratic boost-type converters; furthermore, the topology can be extended. The major benefit of the topology is that there is not a capacitor that sustains the entire output voltage, in contrast to other similar topologies in which there is a capacitor rated to the output port voltage, there is no high voltage capacitor in this system. Experimental verification is presented to confirm the system principles; experiments included a fuel cell emulator that was built and used for the experiments.


2020 ◽  
Vol 10 (22) ◽  
pp. 8254
Author(s):  
Javed Ahmad ◽  
Mohammad Zaid ◽  
Adil Sarwar ◽  
Chang-Hua Lin ◽  
Shafiq Ahmad ◽  
...  

In this paper, a new transformerless high voltage gain dc-dc converter is proposed for low and medium power application. The proposed converter has high quadratic gain and utilizes only two inductors to achieve this gain. It has two switches that are operated simultaneously, making control of the converter easy. The proposed converter’s output voltage gain is higher than the conventional quadratic boost converter and other recently proposed high gain quadratic converters. A voltage multiplier circuit (VMC) is integrated with the proposed converter, which significantly increases the converter’s output voltage. Apart from a high output voltage, the proposed converter has low voltage stress across switches and capacitors, which is a major advantage of the proposed topology. A hardware prototype of 200 W of the proposed converter is developed in the laboratory to validate the converter’s performance. The efficiency of the converter is obtained through PLECS software by incorporating the switching and conduction losses.


2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
Hasaan Farooq ◽  
Hassan Abdullah Khalid ◽  
Waleed Ali ◽  
Ismail Shahid

With the expansion of renewable energy sources worldwide, the need for developing more economical and more efficient converters that can operate on a high frequency with minimal switching and conduction losses has been increased. In power electronic converters, achieving high efficiency is one of the most challenging targets to achieve. The utilization of wideband switches can achieve this goal but add additional cost to the system. LLC resonant converters are widely used in different applications of renewable energy systems, i.e., PV, wind, hydro and geothermal, etc. This type of converter has more benefits than the other converters such as high electrical isolation, high power density, low EMI, and high efficiency. In this paper, a comparison between silicon carbide (SiC) MOSFET and silicon (Si) MOSFET switches was made, by considering a 3KW half-bridge LLC converter with a wide range of input voltage. The switching losses and conduction losses were analyzed through mathematical calculations, and their authenticity was validated with the help of software simulations in PSIM. The results show that silicon carbide (SiC) MOSFETs can work more efficiently, as compared with silicon (Si) MOSFETs in high-frequency power applications. However, in low-voltage and low-power applications, Si MOSFETs are still preferable due to their low-cost advantage.


Sign in / Sign up

Export Citation Format

Share Document