Optimal robotic controller based on signals and data information with kinematic redundancy

Author(s):  
Yair Casas Flores ◽  
Chidentree Treesatayapun
Keyword(s):  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Masafumi Hamaguchi ◽  
Takao Taniguchi

An obstacle avoidance method of action support 7-DOF manipulators is proposed in this paper. The manipulators are controlled with impedance control to follow user's motions. 7-DOF manipulators are able to avoid obstacles without changing the orbit of the end-effector because they have kinematic redundancy. A joint rate vector is used to change angular velocity of an arbitrary joint with kinematic redundancy. The priority of avoidance is introduced into the proposed method, so that avoidance motions precede follow motions when obstacles are close to the manipulators. The usefulness of the proposed method is demonstrated through obstacle avoidance simulations and experiments.


2005 ◽  
Vol 02 (01) ◽  
pp. 105-124 ◽  
Author(s):  
VELJKO POTKONJAK

Handwriting has always been considered an important human task, and accordingly it has attracted the attention of researchers working in biomechanics, physiology, and related fields. There exist a number of studies on this area. This paper considers the human–machine analogy and relates robots with handwriting. The work is two-fold: it improves the knowledge in biomechanics of handwriting, and introduces some new concepts in robot control. The idea is to find the biomechanical principles humans apply when resolving kinematic redundancy, express the principles by means of appropriate mathematical models, and then implement them in robots. This is a step forward in the generation of human-like motion of robots. Two approaches to redundancy resolution are described: (i) "Distributed Positioning" (DP) which is based on a model to represent arm motion in the absence of fatigue, and (ii) the "Robot Fatigue" approach, where robot movements similar to the movements of a human arm under muscle fatigue are generated. Both approaches are applied to a redundant anthropomorphic robot arm performing handwriting. The simulation study includes the issues of legibility and inclination of handwriting. The results demonstrate the suitability and effectiveness of both approaches.


2010 ◽  
Vol 32 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Nguyen Van Khang ◽  
Nguyen Phong Dien ◽  
Nguyen Van Vinh ◽  
Tran Hoang Nam

This paper deals with the problem of inverse kinematics and dynamics of a measuring manipulator with kinematic redundancy which was designed and manufactured at Hanoi University of Technology for measuring the geometric tolerance of surfaces of machining components. A comparison between the calculation result and the experimental measurement is also presented.


Author(s):  
Jiawei Gu ◽  
Zhijiang Xie ◽  
Jian Zhang ◽  
Yangjun Pi

When a parallel robot is equipped with kinematic redundancy, it has sufficient capabilities of natural frequency modulation through adjusting geometric configuration. To reduce resonance of a mechanism, this paper investigates the natural frequency modulation of a kinematically redundant planar parallel robot. A double-threshold searching method is proposed for controlling the inverse kinematics solution and keeping the natural frequencies away from the excitation frequency. The effectiveness of modulating the natural frequencies is demonstrated by comparing it with a non-modulation method. The simulation results indicate that, in all directions, the responses are coupled, and every order should be taken into consideration during natural frequency modulation. Compared to the non-modulation method, the proposed method can reduce the resonance amplitude to a certain extent, and the effect of vibration suppression is remarkable.


2016 ◽  
Vol 116 (5) ◽  
pp. 2236-2249 ◽  
Author(s):  
Jeffrey Weiler ◽  
James Saravanamuttu ◽  
Paul L. Gribble ◽  
J. Andrew Pruszynski

The long-latency stretch response (muscle activity 50–100 ms after a mechanical perturbation) can be coordinated across multiple joints to support goal-directed actions. Here we assessed the flexibility of such coordination and whether it serves to counteract intersegmental dynamics and exploit kinematic redundancy. In three experiments, participants made planar reaches to visual targets after elbow perturbations and we assessed the coordination of long-latency stretch responses across shoulder, elbow, and wrist muscles. Importantly, targets were placed such that elbow and wrist (but not shoulder) rotations could help transport the hand to the target—a simple form of kinematic redundancy. In experiment 1 we applied perturbations of different magnitudes to the elbow and found that long-latency stretch responses in shoulder, elbow, and wrist muscles scaled with perturbation magnitude. In experiment 2 we examined the trial-by-trial relationship between long-latency stretch responses at adjacent joints and found that the magnitudes of the responses in shoulder and elbow muscles, as well as elbow and wrist muscles, were positively correlated. In experiment 3 we explicitly instructed participants how to use their wrist to move their hand to the target after the perturbation. We found that long-latency stretch responses in wrist muscles were not sensitive to our instructions, despite the fact that participants incorporated these instructions into their voluntary behavior. Taken together, our results indicate that, during reaching, the coordination of long-latency stretch responses across multiple joints counteracts intersegmental dynamics but may not be able to exploit kinematic redundancy.


Author(s):  
U Sezgin ◽  
L D Seneviratne ◽  
S W E Earles

Two obstacle avoidance criteria are developed, utilizing the kinematic redundancy of serial redundant manipulators having revolute joints and tracking pre-determined end effector paths. The first criterion is based on the instantaneous distances between certain selected points along the manipulator, called configuration control points (CCP), and the vertices of the obstacles. The optimized joint configurations are obtained by maximizing these distances. Thus, the links of the manipulator are configured away from the obstacles. The second criterion uses a different approach, and is based on Voronoi boundaries representing the equidistant paths between two obstacles. The optimized joint configurations are obtained by minimizing the distances between the CCP and control points selected on the Voronoi boundaries. The validities of the criteria are demonstrated through computer simulations.


Sign in / Sign up

Export Citation Format

Share Document