Computation of Kinematic Redundancy and Its Workspace in RRRR Planar Kinematic Chain

Author(s):  
Shravan Anand Komakula
Author(s):  
Allaoua Brahmia ◽  
Ridha Kelaiaia

Abstract To establish an exercise in open muscular chain rehabilitation (OMC), it is necessary to choose the type of kinematic chain of the mechanical / biomechanical system that constitutes the lower limbs in interaction with the robotic device. Indeed, it’s accepted in biomechanics that a rehabilitation exercise in OMC of the lower limb is performed with a fixed hip and a free foot. Based on these findings, a kinematic structure of a new machine, named Reeduc-Knee, is proposed, and a mechanical design is carried out. The contribution of this work is not limited to the mechanical design of the Reeduc-Knee system. Indeed, to define the minimum parameterizing defining the configuration of the device relative to an absolute reference, a geometric and kinematic study is presented.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1486
Author(s):  
Israel Zamudio-Ramirez ◽  
Roque A. Osornio-Rios ◽  
Jose A. Antonino-Daviu ◽  
Jonathan Cureño-Osornio ◽  
Juan-Jose Saucedo-Dorantes

Electric motors have been widely used as fundamental elements for driving kinematic chains on mechatronic systems, which are very important components for the proper operation of several industrial applications. Although electric motors are very robust and efficient machines, they are prone to suffer from different faults. One of the most frequent causes of failure is due to a degradation on the bearings. This fault has commonly been diagnosed at advanced stages by means of vibration and current signals. Since low-amplitude fault-related signals are typically obtained, the diagnosis of faults at incipient stages turns out to be a challenging task. In this context, it is desired to develop non-invasive techniques able to diagnose bearing faults at early stages, enabling to achieve adequate maintenance actions. This paper presents a non-invasive gradual wear diagnosis method for bearing outer-race faults. The proposal relies on the application of a linear discriminant analysis (LDA) to statistical and Katz’s fractal dimension features obtained from stray flux signals, and then an automatic classification is performed by means of a feed-forward neural network (FFNN). The results obtained demonstrates the effectiveness of the proposed method, which is validated on a kinematic chain (composed by a 0.746 KW induction motor, a belt and pulleys transmission system and an alternator as a load) under several operation conditions: healthy condition, 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm hole diameter on the bearing outer race, and 60 Hz, 50 Hz, 15 Hz and 5 Hz power supply frequencies


2021 ◽  
pp. 103715
Author(s):  
Jan Paskarbeit ◽  
Simon Beyer ◽  
Matthäus Engel ◽  
Adrian Gucze ◽  
Johann Schröder ◽  
...  

2014 ◽  
Vol 19 (1) ◽  
pp. 217-223 ◽  
Author(s):  
Ping Yang ◽  
Kehan Zeng ◽  
Chunquan Li ◽  
Jianming Yang ◽  
Shuting Wang

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Masafumi Hamaguchi ◽  
Takao Taniguchi

An obstacle avoidance method of action support 7-DOF manipulators is proposed in this paper. The manipulators are controlled with impedance control to follow user's motions. 7-DOF manipulators are able to avoid obstacles without changing the orbit of the end-effector because they have kinematic redundancy. A joint rate vector is used to change angular velocity of an arbitrary joint with kinematic redundancy. The priority of avoidance is introduced into the proposed method, so that avoidance motions precede follow motions when obstacles are close to the manipulators. The usefulness of the proposed method is demonstrated through obstacle avoidance simulations and experiments.


2005 ◽  
Vol 02 (01) ◽  
pp. 105-124 ◽  
Author(s):  
VELJKO POTKONJAK

Handwriting has always been considered an important human task, and accordingly it has attracted the attention of researchers working in biomechanics, physiology, and related fields. There exist a number of studies on this area. This paper considers the human–machine analogy and relates robots with handwriting. The work is two-fold: it improves the knowledge in biomechanics of handwriting, and introduces some new concepts in robot control. The idea is to find the biomechanical principles humans apply when resolving kinematic redundancy, express the principles by means of appropriate mathematical models, and then implement them in robots. This is a step forward in the generation of human-like motion of robots. Two approaches to redundancy resolution are described: (i) "Distributed Positioning" (DP) which is based on a model to represent arm motion in the absence of fatigue, and (ii) the "Robot Fatigue" approach, where robot movements similar to the movements of a human arm under muscle fatigue are generated. Both approaches are applied to a redundant anthropomorphic robot arm performing handwriting. The simulation study includes the issues of legibility and inclination of handwriting. The results demonstrate the suitability and effectiveness of both approaches.


2016 ◽  
Vol 823 ◽  
pp. 277-282
Author(s):  
Viorica Velișcu ◽  
Dan Mesarici ◽  
Păun Antonescu

The paper presents a structural analysis of the complex mechanisms type screw-jack. The mechanism mobilityanalysis using various generally applicable formulas has been performed. A newkinematic scheme of the jack linkage has been proposed. Besides the actuatorscrew, it has a planar kinematic chain with articulated bars. With regard tothis new mechanism, an algorithm for static calculus has been developed, inwhich the automobile gravity force is the main exterior force.


Sign in / Sign up

Export Citation Format

Share Document