Investigation on Fractional Order Controller Using Ball-and-Beam System

Author(s):  
Monika Sharma ◽  
Bharat Singh Rajpurohit
2013 ◽  
Vol 313-314 ◽  
pp. 544-548 ◽  
Author(s):  
Mehmet Korkmaz ◽  
Omer Aydogdu

Fractional order controllers which has mostly used recently have investigated in this paper. It is benefit from ball & beam system to show effects of controllers. Fractional order controller and its integer form are compared with simulation results for the mentioned system. Parameters of controllers have obtained by using evolutionary algorithms techniques which are particle swarm optimization (PSO) and genetic algorithms (GAs). According to results, it is confirmed the advantage of fractional controllers. Beside, PSO has a little bit superiority over GAs technique for determining optimum values of controller parameters.


2021 ◽  
Vol 4 (3) ◽  
pp. 50
Author(s):  
Preeti Warrier ◽  
Pritesh Shah

The control of power converters is difficult due to their non-linear nature and, hence, the quest for smart and efficient controllers is continuous and ongoing. Fractional-order controllers have demonstrated superior performance in power electronic systems in recent years. However, it is a challenge to attain optimal parameters of the fractional-order controller for such types of systems. This article describes the optimal design of a fractional order PID (FOPID) controller for a buck converter using the cohort intelligence (CI) optimization approach. The CI is an artificial intelligence-based socio-inspired meta-heuristic algorithm, which has been inspired by the behavior of a group of candidates called a cohort. The FOPID controller parameters are designed for the minimization of various performance indices, with more emphasis on the integral squared error (ISE) performance index. The FOPID controller shows faster transient and dynamic response characteristics in comparison to the conventional PID controller. Comparison of the proposed method with different optimization techniques like the GA, PSO, ABC, and SA shows good results in lesser computational time. Hence the CI method can be effectively used for the optimal tuning of FOPID controllers, as it gives comparable results to other optimization algorithms at a much faster rate. Such controllers can be optimized for multiple objectives and used in the control of various power converters giving rise to more efficient systems catering to the Industry 4.0 standards.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Nenad Muškinja ◽  
Matej Rižnar

We examined a design approach for a PID controller for a nonlinear ball and beam system. Main objective of our research was to establish a nonmodel based control system, which would also not be dependent on a specific ball and beam hardware setup. The proposed PID controller setup is based on a cascaded configuration of an inner PID ball velocity control loop and an outer proportional ball position control loop. The effectiveness of the proposed controller setup was first presented in simulation environment in comparison to a hardware dependent PD cascaded controller, along with a more comprehensive study on possible design approach for optimal PID controller parameters in relation to main functionality of the controller setup. Experimental real time control results were then obtained on a laboratory setup of the ball and beam system on which PD cascaded controller could not be applied without parallel system model processing.


Sign in / Sign up

Export Citation Format

Share Document