Analytical Model of Carbon Nanotube Electrostatics: Density of States, Effective Mass, Carrier Density, and Quantum Capacitance

Author(s):  
Deji Akinwande ◽  
Yoshio Nishi ◽  
H.-S. Philip Wong
2021 ◽  
Author(s):  
Bo Feng

Abstract The effect of Ti doped at Cu site on the thermoelectric properties of BiCuSeO was studied by experimental method and first principles calculation. The results show that Ti doping can cause the lattice contraction and decrease the lattice constant. Ti doping can increase the band gap and lengthen the Cu/Ti-Se bond, resulting in the decrease of carrier concentration. Ti doping can reduce the effective mass and the Bi-Se bond length, correspondingly improve the carrier mobility. Ti doping can decrease the density of states of Cu-3d and Se-4p orbitals at the top of valence band, but Ti-4p orbitals can obviously increase the density of states at the top of valence band and finally increase the electrical conductivity in the whole temperature range. With the decrease of effective mass, Ti doping would reduce the Seebeck coefficient, but the gain effect caused by the increase of electrical conductivity is more than the benefit reduction effect caused by the decrease of Seebeck coefficient, and the power factor shows an upward trend. Ti doping can reduce Young's modulus, lead to the increase of defect scattering and strain field, correspondingly reduce the lattice thermal conductivity and total thermal conductivity. It is greatly increased for the ZT values in the middle and high temperature range, with the highest value of 1.04 at 873 K.


Author(s):  
Yu Xiao ◽  
Wei Liu ◽  
Yang Zhang ◽  
Dongyang Wang ◽  
Haonan Shi ◽  
...  

Among these intricately coupled thermoelectric parameters, the carrier effective mass (m*) and carrier density (n) are two key parameters to determine the electrical transport properties. To enhance the broad-temperature thermoelectric...


Author(s):  
K. Yazdchi ◽  
M. Salehi

In this paper, with introducing a new simplified 3-D Representative Volume Element (RVE) for a wavy carbon nanotube (CNT), an analytical model has been developed to study the stress transfer in single-walled carbon nanotube (SWNT) reinforced polymer composites (NRPCs). The model is capable of predicting axial as well as interfacial shear stresses, along a wavy CNT embedded in a matrix. Based on the pullout modeling technique, the effects of waviness, wavelength and matrix modulus on axial and interfacial shear stresses have also been analyzed in details also using the statistical multiple non-linear regression method, the best-fitted functions for the interfacial stresses of CNT/polymer composites are obtained. The results of the present analytical model are in good agreements when compared with the corresponding results for straight NTs.


Sign in / Sign up

Export Citation Format

Share Document