Investigation of MIMO Wireless Power Transfer Efficiency in Optimization Techniques

Author(s):  
Hyeongwook Lee ◽  
Bomson Lee
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1417
Author(s):  
Jung-Hoon Cho ◽  
Byoung-Hee Lee ◽  
Young-Joon Kim

Electronic devices usually operate in a variable loading condition and the power transfer efficiency of the accompanying wireless power transfer (WPT) method should be optimizable to a variable load. In this paper, a reconfigurable WPT technique is introduced to maximize power transfer efficiency in a weakly coupled, variable load wireless power transfer application. A series-series two-coil wireless power network with resonators at a frequency of 150 kHz is presented and, under a variable loading condition, a shunt capacitor element is added to compensate for a maximum efficiency state. The series capacitance element of the secondary resonator is tuned to form a resonance at 150 kHz for maximum power transfer. All the capacitive elements for the secondary resonators are equipped with reconfigurability. Regardless of the load resistance, this proposed approach is able to achieve maximum efficiency with constant power delivery and the power present at the load is only dependent on the input voltage at a fixed operating frequency. A comprehensive circuit model, calculation and experiment is presented to show that optimized power transfer efficiency can be met. A 50 W WPT demonstration is established to verify the effectiveness of this proposed approach.


2011 ◽  
Vol 383-390 ◽  
pp. 5984-5989
Author(s):  
Yan Ping Yao ◽  
Hong Yan Zhang ◽  
Zheng Geng

In this paper, we present theoretical analysis and detailed design of a class of wireless power transfer (WPT) systems based on strong coupled magnetic resonances. We established the strong coupled resonance conditions for practically implementable WPT systems. We investigated the effects of non-ideal conditions presented in most practical systems on power transfer efficiency and proposed solutions to deal with these problems. We carried out a design of WPT system by using PCB (Printed Circuit Board) antenna pair, which showed strong coupled magnetic resonances. The innovations of our design include: (1) a new coil winding pattern for resonant coils that achieves a compact space volume, (2) fabrication of resonant coils on PCBs, and (3) integration of the entire system on a pair of PCBs. Extensive experiments were performed and experimental results showed that our WPT system setup achieved a guaranteed power transfer efficiency 14% over a distance of two times characteristic length(44cm). The wireless power transfer efficiency in this PCB based experimental system was sufficiently high to lighten up a LED with a signal generator.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1890 ◽  
Author(s):  
Yosra Ben Fadhel ◽  
Sana Ktata ◽  
Khaled Sedraoui ◽  
Salem Rahmani ◽  
Kamal Al-Haddad

Wireless Power Transfer (WPT) is a promising technique, yet still an experimental solution, to replace batteries in existing implants and overcome the related health complications. However, not all techniques are adequate to meet the safety requirements of medical implants for patients. Ensuring a compromise between a small form factor and a high Power Transfer Efficiency (PTE) for transcutaneous applications still remains a challenge. In this work, we have used a resonant inductive coupling for WPT and a coil geometry optimization approach to address constraints related to maintaining a small form factor and the efficiency of power transfer. Thus, we propose a WPT system for medical implants operating at 13.56 MHz using high-efficiency Complementary Metal Oxide-Semiconductor (CMOS) components and an optimized Printed Circuit Coil (PCC). It is divided into two main circuits, a transmitter circuit located outside the human body and a receiver circuit implanted inside the body. The transmitter circuit was designed with an oscillator, driver and a Class-E power amplifier. Experimental results acquired in the air medium show that the proposed system reaches a power transfer efficiency of 75.1% for 0.5 cm and reaches 5 cm as a maximum transfer distance for 10.67% of the efficiency, all of which holds promise for implementing WPT for medical implants that don’t require further medical intervention, and without taking up a lot of space.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3790 ◽  
Author(s):  
Huang ◽  
Zou ◽  
Zhou ◽  
Hong ◽  
Zhang ◽  
...  

Power transfer efficiency is an important issue in wireless power transfer (WPT). In actual applications, the WPT system may be exposed to a complex electromagnetic environment. The metal which is inevitably or accidentally close to the system will impact the power transfer efficiency. Most previous research has aimed at the effect of the metallic sheet paralleled to the resonant coil. This paper focuses on the effect of the metallic plate perpendicular to the resonant coils. Firstly, based on the theoretical analysis, a simulation model is setup using COMSOL Multiphysics. The efficiencies of the double-coils magnetic resonant WPT system with the presence of the parallel and vertical aluminum plate are studied comparatively. Efficiency improvement is observed with the vertical plate while the reduction appeared with the presence of the parallel plate. The vertical metallic plate has shown a magnetic field shielding effect according to the magnetic field distribution. It can reduce the radial magnetic field and enhance the axial magnetic field. Then, the effects of the position and size of the vertical plate are studied. It is found that the transfer efficiency has a preferable improvement when the vertical aluminum plate with a larger size is placed between the resonant coils and near outer edge of the windings. Finally, the experiment is carried out to verify the effect of the vertical aluminum plate on the WPT system.


Sign in / Sign up

Export Citation Format

Share Document