On a Discrete-time Epidemic Model based on a Continuous-time SEIR Model Under Feedback Vaccination Controls

Author(s):  
M. Fernandez-Fernandez ◽  
S. Alonso-Quesada ◽  
M. De la Sen ◽  
A.J. Garrido
2021 ◽  
Author(s):  
Odo Diekmann ◽  
Hans G. Othmer ◽  
Robert Planque ◽  
Martin CJ Bootsma

Surprisingly, the discrete-time version of the general 1927 Kermack-McKendrick epidemic model has, to our knowledge, not been formulated in the literature, and we rectify this omission here. The discrete time version is as general and flexible as its continuous-time counterpart, and contains numerous compartmental models as special cases. In contrast to the continuous time version, the discrete time version of the model is very easy to implement computationally, and thus promises to become a powerful tool for exploring control scenarios for specific infectious diseases. To demonstrate the potential, we investigate numerically how the incidence-peak size depends on model ingredients. We find that, with the same reproduction number and initial speed of epidemic spread, compartmental models systematically predict lower peak sizes than models that use a fixed duration for the latent and infectious periods.


2015 ◽  
Vol 08 (03) ◽  
pp. 1550031
Author(s):  
Qingchu Wu ◽  
Shufang Chen

In this paper, an SIRS epidemic model with high-risk immunization was investigated, where a susceptible neighbor of an infected node is immunized with rate h. Through analyzing the discrete-time model, we found that the epidemic threshold above which an epidemic can prevail and persist in a population is inversely proportional to 1 - h value. We also studied the continuous-time epidemic model and obtained a different result: the epidemic threshold does not depend on the immunization parameter h. Our results suggest that the difference between the discrete-time epidemic model and the continuous-time epidemic model exists in the high-risk immunization.


2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

2020 ◽  
Vol 53 (2) ◽  
pp. 2576-2581
Author(s):  
Fangzhou Liu ◽  
Shaoxuan CUI ◽  
Xianwei Li ◽  
Martin Buss

Psychometrika ◽  
2021 ◽  
Author(s):  
Oisín Ryan ◽  
Ellen L. Hamaker

AbstractNetwork analysis of ESM data has become popular in clinical psychology. In this approach, discrete-time (DT) vector auto-regressive (VAR) models define the network structure with centrality measures used to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous-time (CT) models have been suggested as an alternative but require a conceptual shift, implying that DT-VAR parameters reflect total rather than direct effects. In this paper, we propose and illustrate a CT network approach using CT-VAR models. We define a new network representation and develop centrality measures which inform intervention targeting. This methodology is illustrated with an ESM dataset.


Sign in / Sign up

Export Citation Format

Share Document