A role for desynchronization of neuronal activity in triggering epileptic seizures in the brain

Author(s):  
I. Nicolaescu ◽  
D.J. Mogul
Author(s):  
G.D. Perkin ◽  
M.R. Johnson

Case History—A 33 yr old woman, known to have epilepsy, now presenting with odd behaviour. An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Epilepsy is defined as a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological, and social consequences of this condition. The definition of epilepsy requires the occurrence of at least one epileptic seizure and evidence for an enduring alteration in the brain that increases the likelihood of future seizures such as an ‘epileptiform’ EEG abnormality, an appropriate lesion on structural brain imaging (CT or MRI), or the presence of recurrent (two or more) seizures. Epilepsy is a common, serious neurological disease, with prevalence 1% and a cumulative lifetime risk of 5%....


2020 ◽  
pp. 5860-5882
Author(s):  
Arjune Sen ◽  
M.R. Johnson

Epilepsy is a common, serious neurological disease, with prevalence of 1% and a cumulative lifetime risk of 5%. An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive, synchronous neuronal activity. Epilepsy is defined as a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological, and social consequences of this condition. Traditionally epilepsy was diagnosed after a patient had two or more unprovoked seizures. However, a more modern definition of epilepsy would also include patients who have had an isolated seizure and have evidence for an enduring alteration in the brain that increases the likelihood of future seizures such as an ‘epileptiform’ electroencephalogram abnormality or an appropriate lesion on structural brain imaging (CT or MRI). Epilepsy cannot, though, be diagnosed unless there has been at least one clinical event compatible with an unprovoked seizure.


2019 ◽  
Author(s):  
Carmen Diaz Verdugo ◽  
Sverre Myren-Svelstad ◽  
Celine Deneubourg ◽  
Robbrecht Pelgrims ◽  
Akira Muto ◽  
...  

SUMMARYBrain activity and connectivity alter drastically during epileptic seizures. Throughout this transition, brain networks shift from a balanced resting state to a hyperactive and hypersynchronous state, spreading across the brain. It is, however, less clear which mechanisms underlie these state transitions. By studying neuronal and glial activity across the zebrafish brain, we observed striking differences between these networks. During the preictal period, neurons displayed a small increase in synchronous activity only locally, while the entire glial network was highly active and strongly synchronized across large distances. We observed that the transition from a preictal state to a generalized seizure leads to an abrupt increase in neuronal activity and connectivity, which is accompanied by a strong functional coupling between glial and neuronal networks. Optogenetic activation of glia induced strong and transient burst of neuronal activity, emphasizing a potential role for glia-neuron connections in the generation of epileptic seizures.


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Susumu Takahashi ◽  
Takumi Hombe ◽  
Riku Takahashi ◽  
Kaoru Ide ◽  
Shinichiro Okamoto ◽  
...  

Abstract Background Salmonids return to the river where they were born in a phenomenon known as mother-river migration. The underpinning of migration has been extensively examined, particularly regarding the behavioral correlations of external environmental cues such as the scent of the mother-river and geomagnetic compass. However, neuronal underpinning remains elusive, as there have been no biologging techniques suited to monitor neuronal activity in the brain of large free-swimming fish. In this study, we developed a wireless biologging system to record extracellular neuronal activity in the brains of free-swimming salmonids. Results Using this system, we recorded multiple neuronal activities from the telencephalon of trout swimming in a rectangular water tank. As proof of principle, we examined the activity statistics for extracellular spike waveforms and timing. We found cells firing maximally in response to a specific head direction, similar to the head direction cells found in the rodent brain. The results of our study suggest that the recorded signals originate from neurons. Conclusions We anticipate that our biologging system will facilitate a more detailed investigation into the neural underpinning of fish movement using internally generated information, including responses to external cues.


Sign in / Sign up

Export Citation Format

Share Document