purinergic signalling
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 59)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Karan M Shah ◽  
Luke Tattersall ◽  
Aleana Hussain ◽  
Sarah C Macfarlane ◽  
Alexander Williamson ◽  
...  

Breast cancer metastasis to bone is a major contributor to morbidity and mortality in patients and remains an unmet clinical need. Purinergic signalling via the P2X7 receptor (P2RX7) in the primary tumour microenvironment is associated with progression of several cancers. It has also now become evident that intra-tumoural hypoxia facilitates cancer metastasis and reduces patient survival. In this study, we present data suggesting that hypoxia regulates the expression of P2RX7 in the primary tumour microenvironment; and importantly, inhibition with a selective antagonist (10mg/kg A740003) increased cancer cell death via apoptosis in a E0771/C57BL-6J syngeneic murine model. Furthermore, micro-computed tomography demonstrated reduced number of osteolytic lesions and lesion area following P2RX7 inhibition in absence of overt metastases by decreasing osteoclast numbers. We also demonstrate that activation of P2RX7 plays a role in the secretion of extracellular vesicles (EVs) from breast cancer cells. Mass-spectrometric analyses showed a distinct protein signature for EVs derived from hypoxic compared with normoxic cancer cells which elicit specific responses in bone cells that are associated with pre-metastatic niche formation. Thus, inhibiting P2RX7 provides a novel opportunity to preferentially target the hypoxic breast cancer cells preventing tumour progression and subsequent metastasis to bone


Author(s):  
Djo Hasan ◽  
Atsuko Shono ◽  
Coenraad K. van Kalken ◽  
Peter J. van der Spek ◽  
Eric P. Krenning ◽  
...  

AbstractHyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Karine Massé ◽  
Surinder Bhamra ◽  
Christian Paroissin ◽  
Lilly Maneta-Peyret ◽  
Eric Boué-Grabot ◽  
...  

AbstractThe enpp ectonucleotidases regulate lipidic and purinergic signalling pathways by controlling the extracellular concentrations of purines and bioactive lipids. Although both pathways are key regulators of kidney physiology and linked to human renal pathologies, their roles during nephrogenesis remain poorly understood. We previously showed that the pronephros was a major site of enpp expression and now demonstrate an unsuspected role for the conserved vertebrate enpp4 protein during kidney formation in Xenopus. Enpp4 over-expression results in ectopic renal tissues and, on rare occasion, complete mini-duplication of the entire kidney. Enpp4 is required and sufficient for pronephric markers expression and regulates the expression of RA, Notch and Wnt pathway members. Enpp4 is a membrane protein that binds, without hydrolyzing, phosphatidylserine and its effects are mediated by the receptor s1pr5, although not via the generation of S1P. Finally, we propose a novel and non-catalytic mechanism by which lipidic signalling regulates nephrogenesis.


2021 ◽  
Author(s):  
Saliha Musovic ◽  
Ali M. Komai ◽  
Marina Kalds Said ◽  
Yanling Wu ◽  
Ingrid Wernstedt Asterholm ◽  
...  

AbstractWhite adipocyte adiponectin exocytosis is triggered by cAMP and a concomitant increase of cytosolic Ca2+ potentiates its release. White adipose tissue is richly innervated by sympathetic nerves co-releasing noradrenaline (NA) and ATP that may act on receptors in the adipocyte plasma membrane to increase cAMP via adrenergic receptors and Ca2+ via purinergic receptors, respectively. Here we determine the importance of NA and ATP for the regulation of white adipocyte adiponectin exocytosis, at the cellular and molecular level, and we specifically detail the ATP signalling pathway. Immunohistochemical staining demonstrates that tyrosine hydroxylase (enzyme involved in catecholamine synthesis) is dramatically reduced in inguinal white adipose tissue (IWAT) isolated from mice with diet-induced obesity; this is associated with diminished levels of NA in IWAT and with lowered serum adiponectin. Adiponectin exocytosis (measured as increase in plasma membrane capacitance and as secreted product) is triggered by NA or ATP alone in cultured and primary mouse IWAT adipocytes, and enhanced by a combination of the two secretagogues. The ATP-induced adiponectin exocytosis is largely Ca2+-dependent and activated via P2Y2 receptors (P2Y2Rs) and the Gq11/PLC pathway. Adiponectin release induced by the nucleotide is abrogated in adipocytes isolated from obese/diabetic mice and this is associated with ∼70% reduced abundance of P2Y2Rs. The NA-triggered adiponectin exocytosis is likewise abolished in “obese adipocytes”, concomitant with a 50% lower gene expression of beta 3 adrenergic receptors (β3ARs). The NA-stimulated adiponectin secretion does not contain Ca2+-dependent components. Collectively, our data suggest that sympathetic innervation is a principal regulator of adiponectin exocytosis and that disruptions of this control are associated with the obesity-associated reduction of circulating levels of HMW adiponectin.Key point listWhite adipose tissue is richly innervated by sympathetic nerves that co-release noradrenaline (NA) and ATP.Protein levels of tyrosine hydroxylase and NA are dramatically decreased in white adipose tissue from obese/diabetic mice, concomitant with reduced serum levels of high-molecular weight (HMW) adiponectin.NA and ATP stimulate white adipocyte adiponectin exocytosis via beta adrenergic and purinergic receptors respectively. The ATP-induced adiponectin secretion is chiefly Ca2+-dependent and activated via the P2Y2/Gq11/PLC pathway.The purinergic signalling is abrogated in adipocytes from obese/diabetic mice, due to reduced abundance of P2Y2Rs. The response to NA is likewise abolished in “obese adipocytes”, associated with lowered gene expression of beta 3 adrenergic receptors (β3ARs).We propose that sympathetic innervation is central in regulation of adiponectin exocytosis via co-secretion of NA and ATP and that this control is disrupted in obesity-associated diabetes, leading to lower circulating levels of HMW adiponectin.


Author(s):  
Emma Scaletti ◽  
Franziska U. Huschmann ◽  
Uwe Mueller ◽  
Manfred S. Weiss ◽  
Norbert Sträter

AbstractHuman ecto-5-nucleotidase (CD73) is involved in purinergic signalling, which influences a diverse range of biological processes. CD73 hydrolyses AMP and is the major control point for the levels of extracellular adenosine. Inhibitors of CD73 thus block the immunosuppressive action of adenosine, a promising approach for cancer immunotherapy. Interestingly, ADP and ATP are competitive inhibitors of CD73, with the most potent small-molecule inhibitors to date being non-hydrolysable ADP analogues. While AMP is the major substrate of the enzyme, CD73 has been reported to hydrolyse other 5′-nucleoside monophosphates. Based on a fragment screening campaign at the BESSY II synchrotron, we present the binding modes of various deoxyribo- and ribonucleoside monophosphates and of four additional fragments binding to the nucleoside binding site of the open form of the enzyme. Kinetic analysis of monophosphate hydrolysis shows that ribonucleotide substrates are favoured over their deoxyribose equivalents with AMP being the best substrate. We characterised the initial step of AMP hydrolysis, the binding mode of AMP to the open conformation of CD73 and compared that to other monophosphate substrates. In addition, the inhibitory activity of various bisphosphonic acid derivatives of nucleoside diphosphates was determined. Although AMPCP remains the most potent inhibitor, replacement of the adenine base with other purines or with pyrimidines increases the Ki value only between twofold and sixfold. On the other hand, these nucleobases offer new opportunities to attach substituents for improved pharmacological properties.


Author(s):  
Hai-Yan Yin ◽  
Ya-Peng Fan ◽  
Juan Liu ◽  
Dao-Tong Li ◽  
Jing Guo ◽  
...  

AbstractPurinergic signalling adenosine and its A1 receptors have been demonstrated to get involved in the mechanism of acupuncture (needling therapy) analgesia. However, whether purinergic signalling would be responsible for the local analgesic effect of moxibustion therapy, the predominant member in acupuncture family procedures also could trigger analgesic effect on pain diseases, it still remains unclear. In this study, we applied moxibustion to generate analgesic effect on complete Freund’s adjuvant (CFA)-induced inflammatory pain rats and detected the purine released from moxibustioned-acupoint by high-performance liquid chromatography (HPLC) approach. Intramuscular injection of ARL67156 into the acupoint Zusanli (ST36) to inhibit the breakdown of ATP showed the analgesic effect of moxibustion was increased while intramuscular injection of ATPase to speed up ATP hydrolysis caused a reduced moxibustion-induced analgesia. These data implied that purinergic ATP at the location of ST36 acupoint is a potentially beneficial factor for moxibustion-induced analgesia.


2021 ◽  
Vol 22 (15) ◽  
pp. 8343
Author(s):  
Peter Cuthbertson ◽  
Nicholas J. Geraghty ◽  
Sam R. Adhikary ◽  
Katrina M. Bird ◽  
Stephen J. Fuller ◽  
...  

Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for blood cancers and other haematological disorders. However, allo-HSCT leads to graft-versus-host disease (GVHD), a severe and often lethal immunological response, in the majority of transplant recipients. Current therapies for GVHD are limited and often reduce the effectiveness of allo-HSCT. Therefore, pro- and anti-inflammatory factors contributing to disease need to be explored in order to identify new treatment targets. Purinergic signalling plays important roles in haematopoiesis, inflammation and immunity, and recent evidence suggests that it can also affect haematopoietic stem cell transplantation and GVHD development. This review provides a detailed assessment of the emerging roles of purinergic receptors, most notably P2X7, P2Y2 and A2A receptors, and ectoenzymes, CD39 and CD73, in GVHD.


Author(s):  
Iven-Alex von Muecke-Heim ◽  
Clemens Ries ◽  
Lidia Urbina ◽  
Jan M. Deussing

AbstractDepression affects around 320 million people worldwide. Growing evidence proposes the immune system to be the core interface between psychosocial stress and the neurobiological and behavioural features of depression. Many studies have identified purinergic signalling via the P2X7 receptor (P2X7R) to be of great importance in depression genesis yet only a few have evaluated P2X7R antagonists in chronic stress-based depression models. This review summarizes their findings and analyses their methodology. The four available studies used three to nine weeks of unpredictable, chronic mild stress or unpredictable, chronic stress in male mice or rats. Stress paradigm composition varied moderately, with stimuli being primarily psychophysical rather than psychosocial. Behavioural testing was performed during or after the last week of stress application and resulted in depressive-like behaviours, immune changes (NLRP3 assembly, interleukin-1β level increase, microglia activation) and neuroplasticity impairment. During the second half of each stress paradigm, a P2X7R antagonist (Brilliant Blue G, A-438079, A-804598) was applied. Studies differed with regard to antagonist dosage and application timing. Nonetheless, all treatments attenuated the stress-induced neurobiological changes and depressive-like behaviours. The evidence at hand underpins the importance of P2X7R signalling in chronic stress and depression. However, improvements in study planning and reporting are necessary to minimize experimental bias and increase data purview. To achieve this, we propose adherence to the Research Domain Criteria and the STRANGE framework.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 700
Author(s):  
Ryszard Grygorczyk ◽  
Francis Boudreault ◽  
Olga Ponomarchuk ◽  
Ju Jing Tan ◽  
Kishio Furuya ◽  
...  

The lytic release of ATP due to cell and tissue injury constitutes an important source of extracellular nucleotides and may have physiological and pathophysiological roles by triggering purinergic signalling pathways. In the lungs, extracellular ATP can have protective effects by stimulating surfactant and mucus secretion. However, excessive extracellular ATP levels, such as observed in ventilator-induced lung injury, act as a danger-associated signal that activates NLRP3 inflammasome contributing to lung damage. Here, we discuss examples of lytic release that we have identified in our studies using real-time luciferin-luciferase luminescence imaging of extracellular ATP. In alveolar A549 cells, hypotonic shock-induced ATP release shows rapid lytic and slow-rising non-lytic components. Lytic release originates from the lysis of single fragile cells that could be seen as distinct spikes of ATP-dependent luminescence, but under physiological conditions, its contribution is minimal <1% of total release. By contrast, ATP release from red blood cells results primarily from hemolysis, a physiological mechanism contributing to the regulation of local blood flow in response to tissue hypoxia, mechanical stimulation and temperature changes. Lytic release of cellular ATP may have therapeutic applications, as exemplified by the use of ultrasound and microbubble-stimulated release for enhancing cancer immunotherapy in vivo.


Sign in / Sign up

Export Citation Format

Share Document