A wavelet approach for on-line spike sorting in tetrode recordings

Author(s):  
E De Benedetti ◽  
S E Lew ◽  
B S Zanutto
2018 ◽  
Vol 120 (4) ◽  
pp. 1859-1871 ◽  
Author(s):  
Fernando J. Chaure ◽  
Hernan G. Rey ◽  
Rodrigo Quian Quiroga

The most widely used spike-sorting algorithms are semiautomatic in practice, requiring manual tuning of the automatic solution to achieve good performance. In this work, we propose a new fully automatic spike-sorting algorithm that can capture multiple clusters of different sizes and densities. In addition, we introduce an improved feature selection method, by using a variable number of wavelet coefficients, based on the degree of non-Gaussianity of their distributions. We evaluated the performance of the proposed algorithm with real and simulated data. With real data from single-channel recordings, in ~95% of the cases the new algorithm replicated, in an unsupervised way, the solutions obtained by expert sorters, who manually optimized the solution of a previous semiautomatic algorithm. This was done while maintaining a low number of false positives. With simulated data from single-channel and tetrode recordings, the new algorithm was able to correctly detect many more neurons compared with previous implementations and also compared with recently introduced algorithms, while significantly reducing the number of false positives. In addition, the proposed algorithm showed good performance when tested with real tetrode recordings. NEW & NOTEWORTHY We propose a new fully automatic spike-sorting algorithm, including several steps that allow the selection of multiple clusters of different sizes and densities. Moreover, it defines the dimensionality of the feature space in an unsupervised way. We evaluated the performance of the algorithm with real and simulated data, from both single-channel and tetrode recordings. The proposed algorithm was able to outperform manual sorting from experts and other recent unsupervised algorithms.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Joshua J. Strohl ◽  
Joseph T. Gallagher ◽  
Pedro N. Gómez ◽  
Joshua M. Glynn ◽  
Patricio T. Huerta

Abstract Background Extracellular recording represents a crucial electrophysiological technique in neuroscience for studying the activity of single neurons and neuronal populations. The electrodes capture voltage traces that, with the help of analytical tools, reveal action potentials (‘spikes’) as well as local field potentials. The process of spike sorting is used for the extraction of action potentials generated by individual neurons. Until recently, spike sorting was performed with manual techniques, which are laborious and unreliable due to inherent operator bias. As neuroscientists add multiple electrodes to their probes, the high-density devices can record hundreds to thousands of neurons simultaneously, making the manual spike sorting process increasingly difficult. The advent of automated spike sorting software has offered a compelling solution to this issue and, in this study, we present a simple-to-execute framework for running an automated spike sorter. Methods Tetrode recordings of freely-moving mice are obtained from the CA1 region of the hippocampus as they navigate a linear track. Tetrode recordings are also acquired from the prelimbic cortex, a region of the medial prefrontal cortex, while the mice are tested in a T maze. All animals are implanted with custom-designed, 3D-printed microdrives that carry 16 electrodes, which are bundled in a 4-tetrode geometry. Results We provide an overview of a framework for analyzing single-unit data in which we have concatenated the acquisition system (Cheetah, Neuralynx) with analytical software (MATLAB) and an automated spike sorting pipeline (MountainSort). We give precise instructions on how to implement the different steps of the framework, as well as explanations of our design logic. We validate this framework by comparing manually-sorted spikes against automatically-sorted spikes, using neural recordings of the hippocampus and prelimbic cortex in freely-moving mice. Conclusions We have efficiently integrated the MountainSort spike sorter with Neuralynx-acquired neural recordings. Our framework is easy to implement and provides a high-throughput solution. We predict that within the broad field of bioelectronic medicine, those teams that incorporate high-density neural recording devices to their armamentarium might find our framework quite valuable as they expand their analytical footprint.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Giulia Regalia ◽  
Stefania Coelli ◽  
Emilia Biffi ◽  
Giancarlo Ferrigno ◽  
Alessandra Pedrocchi

Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms’ performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting “building blocks” into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis.


1999 ◽  
Vol 26-27 ◽  
pp. 1033-1038 ◽  
Author(s):  
Sergei P Rebrik ◽  
Brian D Wright ◽  
Alfred A Emondi ◽  
Kenneth D Miller

Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
A.M.H. Schepman ◽  
J.A.P. van der Voort ◽  
J.E. Mellema

A Scanning Transmission Electron Microscope (STEM) was coupled to a small computer. The system (see Fig. 1) has been built using a Philips EM400, equipped with a scanning attachment and a DEC PDP11/34 computer with 34K memory. The gun (Fig. 2) consists of a continuously renewed tip of radius 0.2 to 0.4 μm of a tungsten wire heated just below its melting point by a focussed laser beam (1). On-line operation procedures were developped aiming at the reduction of the amount of radiation of the specimen area of interest, while selecting the various imaging parameters and upon registration of the information content. Whereas the theoretical limiting spot size is 0.75 nm (2), routine resolution checks showed minimum distances in the order 1.2 to 1.5 nm between corresponding intensity maxima in successive scans. This value is sufficient for structural studies of regular biological material to test the performance of STEM over high resolution CTEM.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Sign in / Sign up

Export Citation Format

Share Document