scholarly journals Low power and high accuracy spike sorting microprocessor with on-line interpolation and re-alignment in 90nm CMOS process

Author(s):  
Tung-Chien Chen ◽  
Tsung-Chuan Ma ◽  
Yun-Yu Chen ◽  
Liang-Gee Chen
2011 ◽  
Vol 20 (01) ◽  
pp. 15-27 ◽  
Author(s):  
XIAN TANG ◽  
KONG PANG PUN

A novel switched-current successive approximation ADC is presented in this paper with high speed and low power consumption. The proposed ADC contains a new high-accuracy and power-efficient switched-current S/H circuit and a speed-improved current comparator. Designed and simulated in a 0.18-μm CMOS process, this 8-bit ADC achieves 46.23 dB SNDR at 1.23 MS/s consuming 73.19 μW under 1.2 V voltage supply, resulting in an ENOB of 7.38-bit and an FOM of 0.357 pJ/Conv.-step.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 8
Author(s):  
Luis Álvarez-Simón ◽  
Emmanuel Gómez-Ramírez ◽  
María Sanz-Pascual

This paper presents a novel structure of Resistance- to-Period (R-T) Converter highly robust to supply and temperature variations. Robustness is achieved by using the ratiometric approach so that complex circuits or high accuracy voltage references are not necessary. To prove the proposed architecture of R-T converter, a prototype was implemented in a 0.18 μ m CMOS process with a single supply voltage of 1.8 V and without any stable reference voltage. Experimental results show a maximum ±1.5% output signal variation for ±10% supply voltage variation and in a 3–95 ° C temperature range.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 814 ◽  
Author(s):  
Jiangtao Xu ◽  
Yawei Wang ◽  
Minshun Wu ◽  
Ruizhi Zhang ◽  
Sufen Wei ◽  
...  

An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated in this paper for implantable medical electronics. The proposed BGR shows an average current consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power consumption and noise. The on-off mechanism allows a relatively higher current in the sample phase to alleviate the process variation of bipolar transistors. To compensate the error caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR. The proposed BGR is implemented in 0.35 μm standard CMOS process and occupies a total area of 0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of 1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 °C, an average temperature coefficient of 19.6 ppm/°C is achieved.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


Author(s):  
Kirill D. Liubavin ◽  
Igor V. Ermakov ◽  
Alexander Y. Losevskoy ◽  
Andrey V. Nuykin ◽  
Alexander S. Strakhov
Keyword(s):  
Rfid Tag ◽  

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 889
Author(s):  
Xiaoying Deng ◽  
Peiqi Tan

An ultra-low-power K-band LC-VCO (voltage-controlled oscillator) with a wide tuning range is proposed in this paper. Based on the current-reuse topology, a dynamic back-gate-biasing technique is utilized to reduce power consumption and increase tuning range. With this technique, small dimension cross-coupled pairs are allowed, reducing parasitic capacitors and power consumption. Implemented in SMIC 55 nm 1P7M CMOS process, the proposed VCO achieves a frequency tuning range of 19.1% from 22.2 GHz to 26.9 GHz, consuming only 1.9 mW–2.1 mW from 1.2 V supply and occupying a core area of 0.043 mm2. The phase noise ranges from −107.1 dBC/HZ to −101.9 dBc/Hz at 1 MHz offset over the whole tuning range, while the total harmonic distortion (THD) and output power achieve −40.6 dB and −2.9 dBm, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 805
Author(s):  
Shi Zuo ◽  
Jianzhong Zhao ◽  
Yumei Zhou

This article presents a low power digital controlled oscillator (DCO) with an ultra low power duty cycle correction (DCC) scheme. The DCO with the complementary cross-coupled topology uses the controllable tail resistor to improve the tail current efficiency. A robust duty cycle correction (DCC) scheme is introduced to replace self-biased inverters to save power further. The proposed DCO is implemented in a Semiconductor Manufacturing International Corporation (SMIC) 40 nm CMOS process. The measured phase noise at room temperature is −115 dBc/Hz at 1 MHz offset with a dissipation of 210 μμW at an oscillating frequency of 2.12 GHz, and the resulin figure-of-merit is s −189 dBc/Hz.


Sign in / Sign up

Export Citation Format

Share Document