Ground-based microwave radiometer measurements during the Southern Great Plains '97 experiment

Author(s):  
P.E. O'Neill ◽  
A.Y. Hsu ◽  
T.J. Jackson ◽  
C.T. Swift
2010 ◽  
Vol 3 (5) ◽  
pp. 1319-1331 ◽  
Author(s):  
L. Yurganov ◽  
W. McMillan ◽  
C. Wilson ◽  
M. Fischer ◽  
S. Biraud ◽  
...  

Abstract. CO mixing ratios for the lowermost 2-km atmospheric layer were retrieved from downwelling infrared (IR) radiance spectra of the clear sky measured between 2002 and 2009 by a zenith-viewing Atmospheric Emitted Radiance Interferometer (AERI) deployed at the Southern Great Plains (SGP) observatory of the Atmospheric Radiation Measurements (ARM) Program near Lamont, Oklahoma. A version of a published earlier retrieval algorithm was improved and validated. Archived temperature and water vapor profiles retrieved from the same AERI spectra through automated ARM processing were used as input data for the CO retrievals. We found the archived water vapor profiles required additional constraint using SGP Microwave Radiometer retrievals of total precipitable water vapor. A correction for scattered solar light was developed as well. The retrieved CO was validated using simultaneous independently measured CO profiles from an aircraft. These tropospheric CO profiles were measured from the surface to altitudes of 4572 m a.s.l. once or twice a week between March 2006 and December 2008. The aircraft measurements were supplemented with ground-based CO measurements using a non-dispersive infrared gas correlation instrument at the SGP and retrievals from the Atmospheric IR Sounder (AIRS) above 5 km to create full tropospheric CO profiles. Comparison of the profiles convolved with averaging kernels to the AERI CO retrievals found a squared correlation coefficient of 0.57, a standard deviation of ±11.7 ppbv, a bias of -16 ppbv, and a slope of 0.92. Averaged seasonal and diurnal cycles measured by the AERI are compared with those measured continuously in situ at the SGP in the boundary layer. Monthly mean CO values measured by the AERI between 2002 and 2009 are compared with those measured by the AIRS over North America, the Northern Hemisphere mid-latitudes, and over the tropics.


2011 ◽  
Vol 11 (14) ◽  
pp. 7235-7252 ◽  
Author(s):  
P. J. McBride ◽  
K. S. Schmidt ◽  
P. Pilewskie ◽  
A. S. Kittelman ◽  
D. E. Wolfe

Abstract. We introduce a new spectral method for the retrieval of optical thickness and effective radius from cloud transmittance that relies on the spectral slope of the normalized transmittance between 1565 nm and 1634 nm, and on cloud transmittance at a visible wavelength. The standard dual-wavelength technique, which is traditionally used in reflectance-based retrievals, is ill-suited for transmittance because it lacks sensitivity to effective radius, especially for optically thin clouds. Using the spectral slope rather than the transmittance itself enhances the sensitivity of transmittance observations with respect to the effective radius. This is demonstrated by applying it to the moderate spectral resolution observations from the Solar Spectral Flux Radiometer (SSFR) and Shortwave Spectroradiometer (SWS), and by examining the retrieval uncertainties of the standard and the spectral method for data from the DOE ARM Southern Great Plains (SGP) site and a NOAA ship cruise (ICEALOT). The liquid water path (LWP) is derived from the retrieved optical thickness and effective radius, based on two different assumptions about the cloud vertical profile, and compared to the simultaneous observations from a microwave radiometer. Optical thickness and effective radius is also compared to MODIS retrievals. In general, the effective radius uncertainties were much larger for the standard retrieval than for the spectral retrieval, particularly for thin clouds. When defining 2 μm as upper limit for the tolerable uncertainty of the effective radius, the standard method returned only very few valid retrievals for clouds with an optical thickness below 25. For the analyzed ICEALOT data (mean optical thickness 23), the spectral method provided valid retrievals for 84 % of the data (24 % for the standard method). For the SGP data (mean optical thickness 44), both methods provided a high return of 90 % for the spectral method and 78 % for the standard method.


2002 ◽  
Vol 23 (2) ◽  
pp. 231-248 ◽  
Author(s):  
T. J. Jackson ◽  
A. Y. Hsu ◽  
A. Shutko ◽  
Yu. Tishchenko ◽  
B. Petrenko ◽  
...  

Tellus B ◽  
2011 ◽  
Vol 63 (2) ◽  
Author(s):  
Margaret S. Torn ◽  
Sebastien C. Biraud ◽  
Christopher J. Still ◽  
William J. Riley ◽  
Joe A. Berry

2015 ◽  
Vol 213 ◽  
pp. 209-218 ◽  
Author(s):  
Naama Raz-Yaseef ◽  
Dave P. Billesbach ◽  
Marc L. Fischer ◽  
Sebastien C. Biraud ◽  
Stacey A. Gunter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document