scholarly journals From Patches to Deep Learning: Combining Self-Similarity and Neural Networks for Sar Image Despeckling

Author(s):  
Loic Denis ◽  
Charles-Alban Deledalle ◽  
Florence Tupin
Author(s):  
Adugna G. Mullissa ◽  
Diego Marcos ◽  
Devis Tuia ◽  
Martin Herold ◽  
Johannes Reiche

2020 ◽  
Vol 12 (6) ◽  
pp. 1006 ◽  
Author(s):  
Davide Cozzolino ◽  
Luisa Verdoliva ◽  
Giuseppe Scarpa ◽  
Giovanni Poggi

We propose a new method for SAR image despeckling, which performs nonlocal filtering with a deep learning engine. Nonlocal filtering has proven very effective for SAR despeckling. The key idea is to exploit image self-similarities to estimate the hidden signal. In its simplest form, pixel-wise nonlocal means, the target pixel is estimated through a weighted average of neighbors, with weights chosen on the basis of a patch-wise measure of similarity. Here, we keep the very same structure of plain nonlocal means, to ensure interpretability of results, but use a convolutional neural network to assign weights to estimators. Suitable nonlocal layers are used in the network to take into account information in a large analysis window. Experiments on both simulated and real-world SAR images show that the proposed method exhibits state-of-the-art performance. In addition, the comparison of weights generated by conventional and deep learning-based nonlocal means provides new insight into the potential and limits of nonlocal information for SAR despeckling.


2021 ◽  
Vol 13 (18) ◽  
pp. 3636
Author(s):  
Ye Yuan ◽  
Yanxia Wu ◽  
Yan Fu ◽  
Yulei Wu ◽  
Lidan Zhang ◽  
...  

As one of the main sources of remote sensing big data, synthetic aperture radar (SAR) can provide all-day and all-weather Earth image acquisition. However, speckle noise in SAR images brings a notable limitation for its big data applications, including image analysis and interpretation. Deep learning has been demonstrated as an advanced method and technology for SAR image despeckling. Most existing deep-learning-based methods adopt supervised learning and use synthetic speckled images to train the despeckling networks. This is because they need clean images as the references, and it is hard to obtain purely clean SAR images in real-world conditions. However, significant differences between synthetic speckled and real SAR images cause the domain gap problem. In other words, they cannot show superior performance for despeckling real SAR images as they do for synthetic speckled images. Inspired by recent studies on self-supervised denoising, we propose an advanced SAR image despeckling method by virtue of Bernoulli-sampling-based self-supervised deep learning, called SSD-SAR-BS. By only using real speckled SAR images, Bernoulli-sampled speckled image pairs (input–target) were obtained as the training data. Then, a multiscale despeckling network was trained on these image pairs. In addition, a dropout-based ensemble was introduced to boost the network performance. Extensive experimental results demonstrated that our proposed method outperforms the state-of-the-art for speckle noise suppression on both synthetic speckled and real SAR datasets (i.e., Sentinel-1 and TerraSAR-X).


2020 ◽  
Vol 58 (12) ◽  
pp. 8807-8818
Author(s):  
Xiaoshuang Ma ◽  
Chen Wang ◽  
Zhixiang Yin ◽  
Penghai Wu

2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Sign in / Sign up

Export Citation Format

Share Document