Assessment of Sentinel-1 and Sentinel-2 Satellite Imagery for Crop Classification in Indian Region During Kharif and Rabi Crop Cycles

Author(s):  
Jitendra Singh ◽  
Aniruddha Mahapatra ◽  
Saurav Basu ◽  
Biplab Banerjee
2021 ◽  
Vol 13 (17) ◽  
pp. 3378
Author(s):  
Guillermo Siesto ◽  
Marcos Fernández-Sellers ◽  
Adolfo Lozano-Tello

The demand for new tools for mass remote sensing of crops, combined with the open and free availability of satellite imagery, has prompted the development of new methods for crop classification. Because this classification is frequently required to be completed within a specific time frame, performance is also essential. In this work, we propose a new method that creates synthetic images by extracting satellite data at the pixel level, processing all available bands, as well as their data distributed over time considering images from multiple dates. With this approach, data from images of Sentinel-2 are used by a deep convolutional network system, which will extract the necessary information to discern between different types of crops over a year after being trained with data from previous years. Following the proposed methodology, it is possible to classify crops and distinguish between several crop classes while also being computationally low-cost. A software system that implements this method has been used in an area of Extremadura (Spain) as a complementary monitoring tool for the subsidies supported by the Common Agricultural Policy of the European Union.


2020 ◽  
Vol 202 ◽  
pp. 06036
Author(s):  
Nurhadi Bashit ◽  
Novia Sari Ristianti ◽  
Yudi Eko Windarto ◽  
Desyta Ulfiana

Klaten Regency is one of the regencies in Central Java Province that has an increasing population every year. This can cause an increase in built-up land for human activities. The built-up land needs to be monitored so that the construction is in accordance with the regional development plan so that it does not cause problems such as the occurrence of critical land. Therefore, it is necessary to monitor land use regularly. One method for monitoring land use is the remote sensing method. The remote sensing method is much more efficient in mapping land use because without having to survey the field. The remote sensing method utilizes satellite imagery data that can be processed for land use classification. This study uses the sentinel 2 satellite image data with the Object-Based Image Analysis (OBIA) algorithm to obtain land use classification. Sentinel 2 satellite imagery is a medium resolution image category with a spatial resolution of 10 meters. The land use classification can be used to see the distribution of built-up land in Klaten Regency without having to conduct a field survey. The results of the study obtained a segmentation scale parameter value of 60 and a merge scale parameter value of 85. The classification results obtained by 5 types of land use with OBIA. Agricultural land use dominates with an area of 50% of the total area.


2021 ◽  
Author(s):  
Ramez Saeed ◽  
Saad Abdelrahman ◽  
Andrea Scozari ◽  
Abdelazim Negm

<p><strong>ABSTRACT</strong></p><p>With the fast and highly growing demand for all possible ways of remote work as a result of COVID19 pandemic, new technologies using Satellite data were highly encouraged for multidisciplinary applications in different fields such as; agriculture, climate change, environment, coastal management, maritime, security and Blue Economy.</p><p>This work supports applying Satellite Derived Bathymetry (SDB) with the available low-cost multispectral satellite imagery applications, instruments and readily accessible data for different areas with only their benthic parameters, water characteristics and atmospheric conditions.  The main goal of this work is to derive bathymetric data needed for different hydrographic applications, such as: nautical charting, coastal engineering, water quality monitoring, sediment movement monitoring and supporting both green carbon and marine data science.  Also, this work proposes and assesses a SDB procedure that makes use of publicly-available multispectral satellite images (Sentinel2 MSI) and applies algorithms available in the SNAP software package for extracting bathymetry and supporting bathymetric layers against highly expensive traditional in-situ hydrographic surveys. The procedure was applied at SAFAGA harbor area, located south of Hurghada at (26°44′N, 33°56′E), on the Egyptian Red Sea coast.  SAFAGA controls important maritime traffic line in Red Sea such as (Safaga – Deba, Saudi Arabia) maritime cruises.  SAFAGA depths change between 6 m to 22m surrounded by many shoal batches and confined waters that largely affect maritime safety of navigation.  Therefore, there is always a high demand for updated nautical charts which this work supports.  The outcome of this work provides and fulfils those demands with bathymetric layers data for the approach channel and harbour usage bands electronic nautical chart of SAFAGA with reasonable accuracies.  The coefficient of determination (R<sup>2</sup>) differs between 0.42 to 0.71 after applying water column correction by Lyzenga algorithm and deriving bathymetric data depending on reflectance /radiance of optical imagery collected by sentinel2 missions with in-situ depth data values relationship by Stumpf equation.  The adopted approach proved to give  highly reasonable results that could be used in nautical charts compilation. Similar methodologies could be applied to inland water bodies.  This study is part of the MSc Thesis of the first author and is in the framework of a bilateral project between ASRT of Egypt and CNR of Italy which is still running.</p><p><strong>Keywords: Algorithm, Bathymetry, Sentinel 2, nautical charting, Safaga port, satellite imagery, water depth, Egypt.</strong></p>


2020 ◽  
Vol 12 (20) ◽  
pp. 3376 ◽  
Author(s):  
Giovanni Romano ◽  
Giovanni Francesco Ricci ◽  
Francesco Gentile

In recent decades, technological advancements in sensors have generated increasing interest in remote sensing data for the study of vegetation features. Image pixel resolution can affect data analysis and results. This study evaluated the potential of three satellite images of differing resolution (Landsat 8, 30 m; Sentinel-2, 10 m; and Pleiades 1A, 2 m) in assessing the Leaf Area Index (LAI) of riparian vegetation in two Mediterranean streams, and in both a winter wheat field and a deciduous forest used to compare the accuracy of the results. In this study, three different retrieval methods—the Caraux-Garson, the Lambert-Beer, and the Campbell and Norman equations—are used to estimate LAI from the Normalized Difference Vegetation Index (NDVI). To validate sensor data, LAI values were measured in the field using the LAI 2200 Plant Canopy Analyzer. The statistical indices showed a better performance for Pleiades 1A and Landsat 8 images, the former particularly in sites characterized by high canopy closure, such as deciduous forests, or in areas with stable riparian vegetation, the latter where stable reaches of riparian vegetation cover are almost absent or very homogenous, as in winter wheat fields. Sentinel-2 images provided more accurate results in terms of the range of LAI values. Considering the different types of satellite imagery, the Lambert-Beer equation generally performed best in estimating LAI from the NDVI, especially in areas that are geomorphologically stable or have a denser vegetation cover, such as deciduous forests.


2019 ◽  
Vol 11 (5) ◽  
pp. 514 ◽  
Author(s):  
Lingbo Yang ◽  
Lamin Mansaray ◽  
Jingfeng Huang ◽  
Limin Wang

Geographic object-based image analysis (GEOBIA) has been widely used in the remote sensing of agricultural crops. However, issues related to image segmentation, data redundancy and performance of different classification algorithms with GEOBIA have not been properly addressed in previous studies, thereby compromising the accuracy of subsequent thematic products. It is in this regard that the current study investigates the optimal scale parameter (SP) in multi-resolution segmentation, feature subset, and classification algorithm for use in GEOBIA based on multisource satellite imagery. For this purpose, a novel supervised optimal SP selection method was proposed based on information gain ratio, and was then compared with a preexisting unsupervised optimal SP selection method. Additionally, the recursive feature elimination (RFE) and enhanced RFE (EnRFE) algorithms were modified to generate an improved EnRFE (iEnRFE) algorithm, which was then compared with its precursors in the selection of optimal classification features. Based on the above, random forest (RF), gradient boosting decision tree (GBDT) and support vector machine (SVM) were applied to segmented objects for crop classification. The results indicated that the supervised optimal SP selection method is more suitable for application in heterogeneous land cover, whereas the unsupervised method proved more efficient as it does not require reference segmentation objects. The proposed iEnRFE method outperformed the preexisting EnRFE and RFE methods in optimal feature subset selection as it recorded the highest accuracy and less processing time. The RF, GBDT, and SVM algorithms achieved overall classification accuracies of 91.8%, 92.4%, and 90.5%, respectively. GBDT and RF recorded higher classification accuracies and utilized much less computational time than SVM and are, therefore, considered more suitable for crop classification requiring large numbers of image features. These results have shown that the proposed object-based crop classification scheme could provide a valuable reference for relevant applications of GEOBIA in crop recognition using multisource satellite imagery.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


Sign in / Sign up

Export Citation Format

Share Document