Inter-Orbit Change Detection for High-Resolution SAR Imagery Using Conditional Siamese Network

Author(s):  
Eiji Kaneko ◽  
Takahiro Toizumi ◽  
Kazutoshi Sagi ◽  
Masato Toda
2020 ◽  
Vol 12 (9) ◽  
pp. 1441 ◽  
Author(s):  
Lijun Huang ◽  
Ru An ◽  
Shengyin Zhao ◽  
Tong Jiang ◽  
Hao Hu

Very high-resolution remote sensing change detection has always been an important research issue due to the registration error, robustness of the method, and monitoring accuracy, etc. This paper proposes a robust and more accurate approach of change detection (CD), and it is applied on a smaller experimental area, and then extended to a wider range. A feature space, including object features, Visual Geometry Group (VGG) depth features, and texture features, is constructed. The difference image is obtained by considering the contextual information in a radius scalable circular. This is to overcome the registration error caused by the rotation and shift of the instantaneous field of view and also to improve the reliability and robustness of the CD. To enhance the robustness of the U-Net model, the training dataset is constructed manually via various operations, such as blurring the image, increasing noise, and rotating the image. After this, the trained model is used to predict the experimental areas, which achieved 92.3% accuracy. The proposed method is compared with Support Vector Machine (SVM) and Siamese Network, and the check error rate dropped to 7.86%, while the Kappa increased to 0.8254. The results revealed that our method outperforms SVM and Siamese Network.


2020 ◽  
Author(s):  
Simon Plank ◽  
Sandro Martinis

<p>Rapid mapping of the extent of the affected area as well as type and grade of damage after a landslide event is crucial to enable fast crisis response, i.e., to support rescue and humanitarian operations. Change detection between pre- and post-event very high resolution (VHR) optical imagery is the state-of-the-art in operational rapid mapping of landslides. However, the suitability of optical data relies on clear sky conditions, which is not often the case after landslides events, as heavy rain is one of the most frequent triggers of landslides. In contrast to this, the acquisition of synthetic aperture radar (SAR) imagery is independent of atmospheric conditions. SAR data-based landslide detection approaches reported in the literature use change detection techniques, requiring VHR SAR imagery acquired shortly before the landslide event, which is commonly not available. Modern VHR SAR missions, e.g., Radarsat-2, TerraSAR-X, or COSMO-SkyMed, do not systematically cover the entire world, due to limitations in onboard disk space and downlink transmission rates. Here, we present a fast and transferable procedure for mapping of landslides in vegetated areas, based on change detection between pre-event optical imagery and the polarimetric entropy derived from post-event VHR polarimetric SAR data. Pre-event information is derived from high resolution optical imagery of Landsat-8 or Sentinel-2, which are freely available and systematically acquired over the entire Earth’s landmass. The landslide mapping is refined by slope information from a digital elevation model generated from bi-static TanDEM-X imagery. The methodology was successfully applied to two landslide events of different characteristics: A rotational slide near Charleston, West Virginia, USA and a mining waste earthflow near Bolshaya Talda, Russia.</p>


2011 ◽  
Vol 33 (7) ◽  
pp. 1706-1712 ◽  
Author(s):  
Shao-ming Zhang ◽  
Xiang-chen He ◽  
Xiao-hu Zhang ◽  
Yi-wei Sun
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document