From Direct Bonding Mechanism to 3D Applications

Author(s):  
F. Fournel ◽  
H. Moriceau ◽  
V. Larrey ◽  
C. Morales ◽  
C. Mauguen ◽  
...  
Author(s):  
B. Van Meerbeek ◽  
L. J. Conn ◽  
E. S. Duke

Restoration of decayed teeth with tooth-colored materials that can be bonded to tooth tissue has been a highly desirable property in restorative dentistry for many years. Advantages of such an adhesive restorative technique over conventional techniques using non-adhesive metal-based restoratives include improved restoration retention with minimal sacrifice of sound tooth tissue for retention purposes, superior adaptation and sealing of the restoration margins in prevention of caries recurrence, improved stress distribution across the tooth-restoration interface throughout the whole tooth, and even reinforcement of weakened tooth structures. The dental adhesive technology is rapidly changing. An efficient resin bond to enamel has already long been achieved. Its bonding mechanism has been fully elucidated and has proven to be a durable and reliable clinical treatment. However, bonding to dentin represents a greater challenge. After the failures of a dentin acid-etch technique in imitation of the enamel phosphoric-acid-etch technique and a bonding procedure based on chemical adhesion, modern dentin adhesives are currently believed to bond to dentin by a micromechanical hybridization process. This process is developed by an initial demineralization of the dentin surface layer with acid etchants exposing a collagen fibril arrangement with interfibrillar microporosities that subsequently become impregnated by low-viscosity monomers. Although the development of such a hybridization process has well been documented in the literature, questions remain with respect to parameters of-primary importance to adhesive efficacy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 600
Author(s):  
Cristina Bran ◽  
Jose Angel Fernandez-Roldan ◽  
Rafael P. del Real ◽  
Agustina Asenjo ◽  
Oksana Chubykalo-Fesenko ◽  
...  

Cylindrical magnetic nanowires show great potential for 3D applications such as magnetic recording, shift registers, and logic gates, as well as in sensing architectures or biomedicine. Their cylindrical geometry leads to interesting properties of the local domain structure, leading to multifunctional responses to magnetic fields and electric currents, mechanical stresses, or thermal gradients. This review article is summarizing the work carried out in our group on the fabrication and magnetic characterization of cylindrical magnetic nanowires with modulated geometry and anisotropy. The nanowires are prepared by electrochemical methods allowing the fabrication of magnetic nanowires with precise control over geometry, morphology, and composition. Different routes to control the magnetization configuration and its dynamics through the geometry and magnetocrystalline anisotropy are presented. The diameter modulations change the typical single domain state present in cubic nanowires, providing the possibility to confine or pin circular domains or domain walls in each segment. The control and stabilization of domains and domain walls in cylindrical wires have been achieved in multisegmented structures by alternating magnetic segments of different magnetic properties (producing alternative anisotropy) or with non-magnetic layers. The results point out the relevance of the geometry and magnetocrystalline anisotropy to promote the occurrence of stable magnetochiral structures and provide further information for the design of cylindrical nanowires for multiple applications.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Tingting Zhang ◽  
Wenxian Wang ◽  
Zhifeng Yan ◽  
Jie Zhang

AbstractInterfacial structure greatly affects the mechanical properties of laminated plates. However, the critical material properties that impact the interfacial morphology, appearance, and associated bonding mechanism of explosive welded plates are still unknown. In this paper, the same base plate (AZ31B alloy) and different flyer metals (aluminum alloy, copper, and stainless steel) were used to investigate interfacial morphology and structure. SEM and TEM results showed that typical sine wave, wave-like, and half-wave-like interfaces were found at the bonding interfaces of Al/Mg, Cu/Mg and SS/Mg clad plates, respectively. The different interfacial morphologies were mainly due to the differences in hardness and yield strength between the flyer and base metals. The results of the microstructural distribution at the bonding interface indicated metallurgical bonding, instead of the commonly believed solid-state bonding, in the explosive welded clad plate. In addition, the shear strength of the bonding interface of the explosive welded Al/Mg, Cu/Mg and SS/Mg clad plates can reach up to 201.2 MPa, 147.8 MPa, and 128.4 MPa, respectively. The proposed research provides the design basis for laminated composite metal plates fabrication by explosive welding technology.


Author(s):  
Francesco Pirotti ◽  
Maria Antonia Brovelli ◽  
Gabriele Prestifilippo ◽  
Giorgio Zamboni ◽  
Candan Eylul Kilsedar ◽  
...  

1999 ◽  
Vol 306 (3-4) ◽  
pp. 202-204 ◽  
Author(s):  
Francesc Illas ◽  
Gianfranco Pacchioni ◽  
Alexander Pelmenschikov ◽  
Lars G.M. Pettersson ◽  
Roberto Dovesi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document