Remarks on the stability of asymmetric dynamical neural networks

Author(s):  
S. Tan ◽  
L. Vandenberghe ◽  
J. Vandewalle
1994 ◽  
Vol 05 (03) ◽  
pp. 165-180 ◽  
Author(s):  
SUBRAMANIA I. SUDHARSANAN ◽  
MALUR K. SUNDARESHAN

Complexity of implementation has been a major difficulty in the development of gradient descent learning algorithms for dynamical neural networks with feedback and recurrent connections. Some insights from the stability properties of the equilibrium points of the network, which suggest an appropriate tailoring of the sigmoidal nonlinear functions, can however be utilized in obtaining simplified learning rules, as demonstrated in this paper. An analytical proof of convergence of the learning scheme under specific conditions is given and some upper bounds on the adaptation parameters for an efficient implementation of the training procedure are developed. The performance features of the learning algorithm are illustrated by applying it to two problems of importance, viz., design of associative memories and nonlinear input-output mapping. For the first application, a systematic procedure is given for training a network to store multiple memory vectors as its stable equilibrium points, whereas for the second application, specific training rules are developed for a three-layer network architecture comprising a dynamical hidden layer for the identification of nonlinear input-output maps. A comparison with the performance of a standard backpropagation network provides an illustration of the capabilities of the present network architecture and the learning algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Guiying Chen ◽  
Linshan Wang

The stability of a class of static interval neural networks with time delay in the leakage term is investigated. By using the method ofM-matrix and the technique of delay differential inequality, we obtain some sufficient conditions ensuring the global exponential robust stability of the networks. The results in this paper extend the corresponding conclusions without leakage delay. An example is given to illustrate the effectiveness of the obtained results.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


2021 ◽  
Vol 31 (08) ◽  
pp. 2150143
Author(s):  
Zunxian Li ◽  
Chengyi Xia

In this paper, we explore the dynamical behaviors of the 1D two-grid coupled cellular neural networks. Assuming the boundary conditions of zero-flux type, the stability of the zero equilibrium is discussed by analyzing the relevant eigenvalue problem with the aid of the decoupling method, and the conditions for the occurrence of Turing instability and Hopf bifurcation at the zero equilibrium are derived. Furthermore, the approximate expressions of the bifurcating periodic solutions are also obtained by using the Hopf bifurcation theorem. Finally, numerical simulations are provided to demonstrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document