Multi-Label Streaming Feature Selection via Class-Imbalance Aware Rough Set

Author(s):  
Yizhang Zou ◽  
Xuegang Hu ◽  
Peipei Li ◽  
Junlong Li
Author(s):  
Saman Riaz ◽  
Ali Arshad ◽  
Licheng Jiao

Software fault prediction is the very consequent research topic for software quality assurance. Data driven approaches provide robust mechanisms to deal with software fault prediction. However, the prediction performance of the model highly depends on the quality of dataset. Many software datasets suffers from the problem of class imbalance. In this regard, under-sampling is a popular data pre-processing method in dealing with class imbalance problem, Easy Ensemble (EE) present a robust approach to achieve a high classification rate and address the biasness towards majority class samples. However, imbalance class is not the only issue that harms performance of classifiers. Some noisy examples and irrelevant features may additionally reduce the rate of predictive accuracy of the classifier. In this paper, we proposed two-stage data pre-processing which incorporates feature selection and a new Rough set Easy Ensemble scheme. In feature selection stage, we eliminate the irrelevant features by feature ranking algorithm. In the second stage of a new Rough set Easy Ensemble by incorporating Rough K nearest neighbor rule filter (RK) afore executing Easy Ensemble (EE), named RKEE for short. RK can remove noisy examples from both minority and majority class. Experimental evaluation on real-world software projects, such as NASA and Eclipse dataset, is performed in order to demonstrate the effectiveness of our proposed approach. Furthermore, this paper comprehensively investigates the influencing factor in our approach. Such as, the impact of Rough set theory on noise-filter, the relationship between model performance and imbalance ratio etc. comprehensive experiments indicate that the proposed approach shows outstanding performance with significance in terms of area-under-the-curve (AUC).


2021 ◽  
Author(s):  
Rekha G ◽  
Krishna Reddy V ◽  
chandrashekar jatoth ◽  
Ugo Fiore

Abstract Class imbalance problems have attracted the research community but a few works have focused on feature selection with imbalanced datasets. To handle class imbalance problems, we developed a novel fitness function for feature selection using the chaotic salp swarm optimization algorithm, an efficient meta-heuristic optimization algorithm that has been successfully used in a wide range of optimization problems. This paper proposes an Adaboost algorithm with chaotic salp swarm optimization. The most discriminating features are selected using salp swarm optimization and Adaboost classifiers are thereafter trained on the features selected. Experiments show the ability of the proposed technique to find the optimal features with performance maximization of Adaboost.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Zhang ◽  
Guang Lu ◽  
Jiaquan Li ◽  
Chuanwen Li

Mining useful knowledge from high-dimensional data is a hot research topic. Efficient and effective sample classification and feature selection are challenging tasks due to high dimensionality and small sample size of microarray data. Feature selection is necessary in the process of constructing the model to reduce time and space consumption. Therefore, a feature selection model based on prior knowledge and rough set is proposed. Pathway knowledge is used to select feature subsets, and rough set based on intersection neighborhood is then used to select important feature in each subset, since it can select features without redundancy and deals with numerical features directly. In order to improve the diversity among base classifiers and the efficiency of classification, it is necessary to select part of base classifiers. Classifiers are grouped into several clusters by k-means clustering using the proposed combination distance of Kappa-based diversity and accuracy. The base classifier with the best classification performance in each cluster will be selected to generate the final ensemble model. Experimental results on three Arabidopsis thaliana stress response datasets showed that the proposed method achieved better classification performance than existing ensemble models.


2011 ◽  
Vol 24 (2) ◽  
pp. 275-281 ◽  
Author(s):  
Yumin Chen ◽  
Duoqian Miao ◽  
Ruizhi Wang ◽  
Keshou Wu

Sign in / Sign up

Export Citation Format

Share Document