scholarly journals Dynamic Modeling and Performance Analysis of PMSG- based Variable Speed WTG: Case Study of Adama Wind Farm I, Ethiopia

2021 ◽  
Vol 12 (2) ◽  
pp. 155-172
Author(s):  
Zenachew Muluneh ◽  
Gebremichael Teame

In this paper, the performance of Permanent Magnet Synchronous Generator (PMSG) -based Variable Speed Wind Turbine Generator (WTG) at Adama Wind Farm I (WTG), connected to a grid is studied. To study the performance of the WTG, both machine and grid side converters are modeled and analyzed very well. On the machine side, maximum power point tracking (MPPT) for maximum energy extraction is done using the direct speed control (DSC) technique, which is linked with the optimal tip speed ratio for each wind speed value considered. On the grid side, dc-link voltage and reactive power flow to the grid are controlled. For this purpose, first, the simulation model of the system is prepared in MATLAB Simulink considering the dynamic mathematical model of the PMSG, and Wind Turbine Aerodynamic model using the user-defined function blocks. Then, the PI regulators designed for direct speed, torque (current) control, and dc-link voltage are employed in the model. Moreover, to study and analyze the behavior of the system in a variable speed operation, a wind speed starting from cut-in wind speed (3m/s) to the rated wind speed (11m/s) is applied in 4s. The simulation result of the existing system model shows that the actual values of performance variables correspond well with the analytical values of the system. In addition, the chosen control algorithms applied in the control system of the generator-side converter are hence verified.

2006 ◽  
Vol 128 (4) ◽  
pp. 516-530 ◽  
Author(s):  
B. Boukhezzar ◽  
H. Siguerdidjane ◽  
M. Maureen Hand

To maximize wind power extraction, a variable-speed wind turbine (VSWT) should operate as close as possible to its optimal power coefficient. The generator torque is used as a control input to improve wind energy capture by forcing the wind turbine (WT) to stay close to the maximum energy point. In general, current control techniques do not take into account the dynamical and stochastic aspect of both turbine and wind, leading to significant power losses. In addition, they are not robust with respect to disturbances. In order to address these weaknesses, a nonlinear approach, without wind speed measurement for VSWT control, is proposed. Nonlinear static and dynamic state feedback controllers with wind speed estimator are then derived. The controllers were tested with a WT simple mathematical model and are validated with an aeroelastic wind turbine simulator in the presence of disturbances and measurement noise. The results have shown better performance in comparison with existing controllers.


Author(s):  
E. Muljadi ◽  
C. P. Butterfield

Wind power generation has increased very rapidly in the past few years. The total U.S. wind power capacity by the end of 2001 was 4,260 megawatts. As wind power capacity increases, it becomes increasingly important to study the impact of wind farm output on the surrounding power networks. In this paper, we attempt to simulate a wind farm by including the properties of the wind turbine, the wind speed time series, the characteristics of surrounding power network, and reactive power compensation. Mechanical stress and fatigue load of the wind turbine components are beyond the scope this paper. The paper emphasizes the impact of the wind farms on the electrical side of the power network. A typical wind farm with variable speed wind turbines connected to an existing power grid is investigated. Different control strategies for feeding wind energy into the power network are investigated, and the advantages and disadvantages are presented.


2021 ◽  
Vol 11 (3) ◽  
pp. 7279-7282
Author(s):  
Α. Guediri ◽  
Α. Guediri

In this article, we will study a system consisting of a wind turbine operating at a variable wind speed and a two-feed asynchronous machine (DFIG) connected to the grid by the stator and fed by a transducer at the rotor side. The conductors are separately controlled for active and reactive power flow between the stator (DFIG) and the network, which is achieved using conventional PI and fuzzy logic. The proposed controllers generate reference voltages for the rotor to ensure that the active and reactive powers reach the required reference values, in order to ensure effective tracking of the optimum operating point and to obtain the maximum electrical power output. System modeling and simulation were examined with Matlab. Dynamic analysis of the system is performed under variable wind speed. This analysis is based on active and reactive energy control. The results obtained show the advantages of the proposed intelligent control unit.


2003 ◽  
Vol 125 (4) ◽  
pp. 410-417
Author(s):  
E. Muljadi ◽  
C. P. Butterfield

Wind power generation has increased very rapidly in the past few years. The total U.S. wind power capacity by the end of 2002 was 4,685 megawatts. As wind power capacity increases, it becomes increasingly important to study the impact of wind farm output on the surrounding power networks. In this paper, we attempt to simulate a wind farm by including the properties of the wind turbine, the wind speed time series, the characteristics of surrounding power network, and reactive power compensation. Mechanical stress and fatigue load of the wind turbine components are beyond the scope this paper. The paper emphasizes the impact of the wind farms on the electrical side of the power network. We investigate a typical wind farm with variable-speed wind turbines connected to an existing power grid. We also examine different control strategies for feeding wind energy into the power network and present the advantages and disadvantages.


A doubly-fed induction generator (DFIG) applied to wind power generation driven by wind turbine is under study for low voltage ride-through application during system unbalance. Use of DFIG in wind turbine is widely spreading due to its control over DC voltage and active and reactive power. Conventional dq axis current control using voltage source converters for both the grid side and the rotor side of the DFIG are analyzed and simulated. An improved control and operation of DFIG system under unbalanced grid voltage conditions by coordinating the control of both the rotor side converter (RSC) and the grid side converter (GSC) is done in this thesis. Simulation and analysis of DFIG system with wind turbine using Fuzzy logic controller for RSC and GSC under unbalanced condition is presented in the positive synchronous reference frame. The common DC-link voltage is controlled by grid side converter and control of DFIG’s stator output active and reactive power is controlled by rotor side converter. The steady-state operation of the DFIG and its dynamic response to voltage sag resulting from a remote fault on the 120-kV system is shown in this thesis using controllers. Modeling of DFIG system under Fuzzy logic controller to control voltage and active-reactive powers is done using MATLAB/SIMULINK.


2018 ◽  
Vol 36 (6) ◽  
pp. 1708-1728 ◽  
Author(s):  
Zahid H Hulio ◽  
Wei Jiang

Pakistan pursued the renewable energy policy to minimize the cost of energy per kWh as well as dependence on costly imported oil. Jhimpir site is termed as wind corridor and has tremendous proven wind power potential. The site is hosted for the first installed wind power plant. The aim of paper is to investigate the performance and levelized cost of energy of a wind farm. The methodology covers assessment of wind characteristics, performance function and levelized cost of energy model. The measured mean wind speed was found to be 8 m/s at 80 m above the ground level. The average values of standard deviation, Weibull k and c parameters, obtained using entire data set, were found to be 2.563, 3.360 and 8.940 m/s at 80 m. Performance assessment including technical, real availability and average capacity factor was found to be 97, 90 and 34.50%, respectively. It is evident that the power coefficient dropped if wind speed crosses the rated power. So it can be concluded that the efficiency of wind turbine decreased by increased wind speed. Tip speed ratio shows that a wind turbine operating close to optimal lift and drag will exhibit the performance level. Wind turbine performs better at the wind speed between 6 and 10 m/s. The estimated average levelized cost of energy was US $0.11371 and US $0.04092/kWh for 1–10 and 11–20 years, respectively. This makes it competitive in terms of low production cost per kWh to other energy technologies.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Mehmet Bilgili ◽  
Mehmet Tontu ◽  
Besir Sahin

Abstract Wind turbine technology in the world has been developed by continuously improving turbine performance, design, and efficiency. Over the last 40 years, the rated capacity and dimension of the commercial wind turbines have increased dramatically, so the energy cost has declined significantly, and the industry has moved from an idealistic position to an acknowledged component of the power generation industry. For this reason, a thorough examination of the aerodynamic rotor performance of a modern large-scale wind turbine working on existing onshore wind farms is critically important to monitor and control the turbine performance and also for forecasting turbine power. This study focuses on the aerodynamic rotor performance of a 3300-kW modern commercial large-scale wind turbine operating on an existing onshore wind farm based on the measurement data. First, frequency distributions of wind speeds and directions were obtained using measurements over one year. Then, wind turbine parameters such as free-stream wind speed (U∞), far wake wind speed (UW), axial flow induction factor (a), wind turbine power coefficient (CP), tangential flow induction factor (a′), thrust force coefficient (CT), thrust force (T), tip-speed ratio (λ), and flow angle (ϕ) were calculated using the measured rotor disc wind speed (UD), atmospheric air temperature (Tatm), turbine rotational speed (Ω), and turbine power output (P) parameters. According to the results obtained, the maximum P, CP, CT, T, and Ω were calculated as approximately 3.3 MW, 0.45, 0.6, 330 kN, and 12.9 rpm, respectively, while the optimum λ, ϕ, U∞, and Ω for the maximum CP were determined as 7.5–8.5, 6–6.3°, 5–10 m/s, and 6–10 rpm, respectively. These calculated results can contribute to assessing the economic and technical feasibility of modern commercial large-scale wind turbines and supporting future developments in wind energy and turbine technology.


1984 ◽  
Vol 106 (3) ◽  
pp. 347-350 ◽  
Author(s):  
D. E. Cromack ◽  
Debbie Oscar

The optimized design of a wind turbine depends on numerous parameters involving the entire machine (rotor, generator, etc.) and on the intended operating environment as described by the wind characteristics as well as on the load or application. This paper presents the design optimization process, identifies and discusses the influence of the various parameters, and then reviews the procedure by looking at two examples. The results of this process emphasize the relative importance of the design on rated wind speed, rotor rpm, generator size, and rotor blade characteristics. These results in general show that wind turbines have been designed for excessively high-rated wind speeds and generator capacities, except for those machines intended for wind farm applications and sites with particularly high winds. Machines designed for residential use should be sized to closely match the expected load and should be rated at a wind speed close to that value where the maximum energy contribution occurs. This wind speed is much lower than the rated wind speed for most currently available machines particularly for regions of relatively low annual mean wind speeds. Simplicity of design leads to a lower cost system, lower maintenance, and operating costs and greater reliability. It is this simply designed and optimized wind turbine that will have lasting success in the commercial market place.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


2016 ◽  
Vol 63 (12) ◽  
pp. 7754-7764 ◽  
Author(s):  
Dan-Yong Li ◽  
Wen-Chuan Cai ◽  
Peng Li ◽  
Zi-Jun Jia ◽  
Hou-Jin Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document