Spatial datamodel based schema creation for the forest change phenomenon

Author(s):  
K. R. Manjula ◽  
Singaraju Jyothi
Keyword(s):  
2020 ◽  
Vol 12 (19) ◽  
pp. 3226
Author(s):  
Daniel Cunningham ◽  
Paul Cunningham ◽  
Matthew E. Fagan

Global tree cover products face challenges in accurately predicting tree cover across biophysical gradients, such as precipitation or agricultural cover. To generate a natural forest cover map for Costa Rica, biases in tree cover estimation in the most widely used tree cover product (the Global Forest Change product (GFC) were quantified and corrected, and the impact of map biases on estimates of forest cover and fragmentation was examined. First, a forest reference dataset was developed to examine how the difference between reference and GFC-predicted tree cover estimates varied along gradients of precipitation and elevation, and nonlinear statistical models were fit to predict the bias. Next, an agricultural land cover map was generated by classifying Landsat and ALOS PalSAR imagery (overall accuracy of 97%) to allow removing six common agricultural crops from estimates of tree cover. Finally, the GFC product was corrected through an integrated process using the nonlinear predictions of precipitation and elevation biases and the agricultural crop map as inputs. The accuracy of tree cover prediction increased by ≈29% over the original global forest change product (the R2 rose from 0.416 to 0.538). Using an optimized 89% tree cover threshold to create a forest/nonforest map, we found that fragmentation declined and core forest area and connectivity increased in the corrected forest cover map, especially in dry tropical forests, protected areas, and designated habitat corridors. By contrast, the core forest area decreased locally where agricultural fields were removed from estimates of natural tree cover. This research demonstrates a simple, transferable methodology to correct for observed biases in the Global Forest Change product. The use of uncorrected tree cover products may markedly over- or underestimate forest cover and fragmentation, especially in tropical regions with low precipitation, significant topography, and/or perennial agricultural production.


2016 ◽  
Vol 173 ◽  
pp. 326-338 ◽  
Author(s):  
Christophe Sannier ◽  
Ronald E. McRoberts ◽  
Louis-Vincent Fichet

2021 ◽  
Vol 13 (9) ◽  
pp. 1743
Author(s):  
Daniel Paluba ◽  
Josef Laštovička ◽  
Antonios Mouratidis ◽  
Přemysl Štych

This study deals with a local incidence angle correction method, i.e., the land cover-specific local incidence angle correction (LC-SLIAC), based on the linear relationship between the backscatter values and the local incidence angle (LIA) for a given land cover type in the monitored area. Using the combination of CORINE Land Cover and Hansen et al.’s Global Forest Change databases, a wide range of different LIAs for a specific forest type can be generated for each scene. The algorithm was developed and tested in the cloud-based platform Google Earth Engine (GEE) using Sentinel-1 open access data, Shuttle Radar Topography Mission (SRTM) digital elevation model, and CORINE Land Cover and Hansen et al.’s Global Forest Change databases. The developed method was created primarily for time-series analyses of forests in mountainous areas. LC-SLIAC was tested in 16 study areas over several protected areas in Central Europe. The results after correction by LC-SLIAC showed a reduction of variance and range of backscatter values. Statistically significant reduction in variance (of more than 40%) was achieved in areas with LIA range >50° and LIA interquartile range (IQR) >12°, while in areas with low LIA range and LIA IQR, the decrease in variance was very low and statistically not significant. Six case studies with different LIA ranges were further analyzed in pre- and post-correction time series. Time-series after the correction showed a reduced fluctuation of backscatter values caused by different LIAs in each acquisition path. This reduction was statistically significant (with up to 95% reduction of variance) in areas with a difference in LIA greater than or equal to 27°. LC-SLIAC is freely available on GitHub and GEE, making the method accessible to the wide remote sensing community.


2021 ◽  
Vol 66 (1) ◽  
pp. 175-187
Author(s):  
Duong Phung Thai ◽  
Son Ton

On the basis of using practical methods, satellite image processing methods, the vegetation coverage classification system of the study area, interpretation key for the study area, classification and post-classification pro cessing, this research introduces how to exploit and process multi-temporal satellite images in evaluating the changes of forest area. Landsat 4, 5 TM and Landsat 8 OLI remote sensing image data were used to evaluate the changes in the area of mangrove forests (RNM) in Ca Mau province in the periods of 1988 - 1998, 1998 - 2013, 2013 - 2018, and 1988 - 2018. The results of the image interpretation in 1988, 1998, 2013, 2018 and the overlapping of the above maps show: In the 30-year period from 1988 to 2018, the total area of mangroves in Ca Mau province was decreased by 28% compared to the beginning, from 71,093.3 ha in 1988 reduced to 51,363.5 ha in 2018, decreasing by 19,729.8 ha. The recovery speed of mangroves is 2 times lower than their disappearance speed. Specifically, from 1988 to 2018, mangroves disappeared on an area of 42,534.9 hectares and appeared on the new area of 22,805 hectares, only 12,154.5 hectares of mangroves remained unchanged. The fluctuation of mangrove area in Ca Mau province is related to the process of deforestation to dig shrimp ponds, coastal erosion, the formation of mangroves on new coastal alluvial lands and soil dunes in estuaries, as well as planting new mangroves in inefficient shrimp ponds.


2013 ◽  
Vol 17 (2) ◽  
pp. 619-635 ◽  
Author(s):  
N. Köplin ◽  
B. Schädler ◽  
D. Viviroli ◽  
R. Weingartner

Abstract. Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenarios were derived from ten regional climate models from the ENSEMBLES project. Their respective temperature and precipitation changes between the scenario period (2074–2095) and the control period (1984–2005) were used to run a hydrological model. The relative importance of each of the three types of scenarios (climate, glacier, forest) was assessed through an analysis of variance (ANOVA). Altogether, 15 mountainous catchments in Switzerland were analysed, exhibiting different degrees of glaciation during the control period (0–51%) and different degrees of forest cover increase under scenarios of change (12–55% of the catchment area). The results show that even an extreme change in forest cover is negligible with respect to changes in runoff, but it is crucial as soon as changes in evaporation or soil moisture are concerned. For the latter two variables, the relative impact of forest change is proportional to the magnitude of its change. For changes that concern 35% of the catchment area or more, the effect of forest change on summer evapotranspiration is equally or even more important than the climate signal. For catchments with a glaciation of 10% or more in the control period, the glacier retreat significantly determines summer and annual runoff. The most important source of uncertainty in this study, though, is the climate scenario and it is highly recommended to apply an ensemble of climate scenarios in the impact studies. The results presented here are valid for the climatic region they were tested for, i.e., a humid, mid-latitude mountainous environment. They might be different for regions where the evaporation is a major component of the water balance, for example. Nevertheless, a hydrological climate-impact study that assesses the additional impacts of forest and glacier change is new so far and provides insight into the question whether or not it is necessary to account for land cover changes as part of climate change impacts on hydrological systems.


2011 ◽  
Vol 21 (3) ◽  
pp. 947-956 ◽  
Author(s):  
Thomas Kastner ◽  
Karl-Heinz Erb ◽  
Sanderine Nonhebel

2016 ◽  
Vol 8 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Oumer S. Ahmed ◽  
Michael A. Wulder ◽  
Joanne C. White ◽  
Txomin Hermosilla ◽  
Nicholas C. Coops ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document