Beam-steering in microstrip patch antenna array using DGS based phase shifters at 5.2 GHz

Author(s):  
R. A. Pandhare ◽  
P. L. Zade ◽  
M. P. Abegaonkar
2022 ◽  
Vol 72 (1) ◽  
pp. 67-72
Author(s):  
Anil Kumar Yerrola ◽  
Maifuz Ali ◽  
Ravi Kumar Arya ◽  
Lakhindar Murmu ◽  
Ashwani Kumar

In millimeter-wave (mmWave) communications, the antenna gain is a crucial parameter to overcome path loss and atmospheric attenuation. This work presents the design of two cylindrical conformal antenna arrays, made of modified rectangular microstrip patch antenna as a radiating element, working at 28 GHz for mmWave applications providing high gain and beam steering capability. The microstrip patch antenna element uses Rogers RO4232 substrate with a thickness of 0.5 mm and surface area of 5.8 mm × 5.8 mm. The individual antenna element provides a gain of 6.9 dBi with return loss bandwidth of 5.12 GHz. The first antenna array, made by using five conformal antenna elements, achieves a uniform gain of approximately 12 dBi with minimal scan loss for extensive scan angles. In the second antenna array, a dielectric superstrate using Rogers TMM (10i) was used to modify the first antenna array. It enhanced the gain to approximately 16 dBi while still maintaining low scan loss for wide angles. The proposed array design method is very robust and can be applied to any conformal surface. The mathematical equations are also provided to derive the array design, and both array designs are verified by using full-wave simulations.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 415
Author(s):  
Haiyue Wang ◽  
Lianwen Deng ◽  
Heng Luo ◽  
Junsa Du ◽  
Daohan Zhou ◽  
...  

The microwave wireless power transfer (MWPT) technology has found a variety of applications in consumer electronics, medical implants and sensor networks. Here, instead of a magnetic resonant coupling wireless power transfer (MRCWPT) system, a novel MWPT system based on a frequency reconfigurable (covering the S-band and C-band) microstrip patch antenna array is proposed for the first time. By switching the bias voltage-dependent capacitance value of the varactor diode between the larger main microstrip patch and the smaller side microstrip patch, the working frequency band of the MWPT system can be switched between the S-band and the C-band. Specifically, the operated frequencies of the antenna array vary continuously within a wide range from 3.41 to 3.96 GHz and 5.7 to 6.3 GHz. For the adjustable range of frequencies, the return loss of the antenna array is less than −15 dB at the resonant frequency. The gain of the frequency reconfigurable antenna array is above 6 dBi at different working frequencies. Simulation results verified by experimental results have shown that power transfer efficiency (PTE) of the MWPT system stays above 20% at different frequencies. Also, when the antenna array works at the resonant frequency of 3.64 GHz, the PTE of the MWPT system is 25%, 20.5%, and 10.3% at the distances of 20 mm, 40 mm, and 80 mm, respectively. The MWPT system can be used to power the receiver at different frequencies, which has great application prospects and market demand opportunities.


Author(s):  
Syahirah Shawalil ◽  
Khairul Najmy Abdul Rani ◽  
Hasliza A. Rahim

This paper presents a design of a wearable textile microstrip patch rectifying antenna (rectenna) array operating for wireless body area network (WBAN) at the center frequency, <em>f<sub>c</sub></em> of 2.45 GHz.  Precisely, jeans or denim with the relative permittivity, <sub> </sub>= 1.70 and thickness of 1.00 mm is chosen as a substrate attached to SheildIt Super as a conductive material with the thickness, <em>h</em> of 0.17 mm and conductivity of 6.67  10<sup>5</sup> S/m, respectively. In the first stage, a microstrip patch antenna array layout with the inset fed technique is designed and simulated by using the Keysight Advanced Design System (ADS) software.  In the second stage, a wearable textile microstrip patch antenna array is fabricated, integrated, and hidden inside the jeans fabric.  In the third stage, the rectifier circuit layout on the flame retardant-4    (FR-4) printed circuit board (PCB) with the dielectric constant,  = 4.7, thickness, <em>h</em> = 1.6 mm, and loss tangent, <em>δ</em> = 0.018 that can generate radio frequency-direct current (RF-DC) conversion is designed and simulated using the ADS software  Each simulation result and fabrication measurement shows that the designed antenna array characteristics are suitable for an industrial, scientific, and medical radio (ISM) band by having the reflection coefficient, <em>S</em><sub>11</sub> less than -10 decibel (dB) at the respective resonant frequency, <em>f<sub>r</sub>.</em>  Moreover, through simulation, the output DC voltage for the bridge rectifier circuit is from 132 mV to 5.01 V with the corresponding power conversion efficiency (PCE) between 3.48% and 50.20% whereas for the voltage doubler rectifier, the output DC voltage is from 417 mV to 2.91 V with the corresponding PCE between 34.78% and 53.56%, respectively.


Author(s):  
Kalsouabe Zoukalne ◽  
Abdoulaye Chaibo ◽  
Mahamoud Youssouf Khayal

The paper presents design of microstrip patch antenna array with two elements radiating for 5G C-band access point application resonating at 3.6GHz. Proposed antenna is designed on Rogers RO4350(tm) substrate with 3.54mm thickness and dielectric constant =3.66. The designed antenna has three slots, two placed on each radiating elements and one on the power line. Simulated by using HFSS17.02, the gain of the designed antenna is 9dBi and his bandwidth is 200MHz.Microstrip patch antenna


Sign in / Sign up

Export Citation Format

Share Document