scholarly journals Microwave Wireless Power Transfer System Based on a Frequency Reconfigurable Microstrip Patch Antenna Array

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 415
Author(s):  
Haiyue Wang ◽  
Lianwen Deng ◽  
Heng Luo ◽  
Junsa Du ◽  
Daohan Zhou ◽  
...  

The microwave wireless power transfer (MWPT) technology has found a variety of applications in consumer electronics, medical implants and sensor networks. Here, instead of a magnetic resonant coupling wireless power transfer (MRCWPT) system, a novel MWPT system based on a frequency reconfigurable (covering the S-band and C-band) microstrip patch antenna array is proposed for the first time. By switching the bias voltage-dependent capacitance value of the varactor diode between the larger main microstrip patch and the smaller side microstrip patch, the working frequency band of the MWPT system can be switched between the S-band and the C-band. Specifically, the operated frequencies of the antenna array vary continuously within a wide range from 3.41 to 3.96 GHz and 5.7 to 6.3 GHz. For the adjustable range of frequencies, the return loss of the antenna array is less than −15 dB at the resonant frequency. The gain of the frequency reconfigurable antenna array is above 6 dBi at different working frequencies. Simulation results verified by experimental results have shown that power transfer efficiency (PTE) of the MWPT system stays above 20% at different frequencies. Also, when the antenna array works at the resonant frequency of 3.64 GHz, the PTE of the MWPT system is 25%, 20.5%, and 10.3% at the distances of 20 mm, 40 mm, and 80 mm, respectively. The MWPT system can be used to power the receiver at different frequencies, which has great application prospects and market demand opportunities.

2021 ◽  
Vol 36 (3) ◽  
pp. 302-307

This paper reported a pioneering 5G multiband microstrip line fed patch antenna for IoT, wireless power transfer (WPT) and data transmission. The proposed antenna is accomplished using a triple L-arms patch antenna responsible for the multiband response. A diamond-shaped ground slot is added to control and increase the bandwidth of the resonant frequency. The antenna is designed to resonate at 10, 13, 17 and 26 GHz with 10 dB impedance bandwidths of 0.67, 0.8, 2.45 and 4.3 GHz respectively. The proposed antenna is fabricated using microstrip technology with total area of 16.5x16.5 mm2. The 5G multiband antenna has sufficient realized gain of 4.95, 5.72, 4.94 and 7.077 dB respectively. The antenna is designed and simulated using the CST Microwave Studio Suite (Computer Simulation Technology). Measurements show good agreement with simulations in all frequencies of operation.


2016 ◽  
Vol 3 (1) ◽  
pp. 9-14
Author(s):  
Nurcan Keskin ◽  
Huaping Liu

Power transfer efficiency in loosely coupled inductive systems can be enhanced by resonance. Primary and secondary can be tuned to same resonant frequency. In this paper, MOSFET-based Varactors and switchable capacitors are used for re-tuning of such a system at 13.56 MHz. This is achieved either using each cap structure alone or as a hybrid model. These techniques are designed for 13.56 MHz wireless power transfer system.


Author(s):  
Syahirah Shawalil ◽  
Khairul Najmy Abdul Rani ◽  
Hasliza A. Rahim

This paper presents a design of a wearable textile microstrip patch rectifying antenna (rectenna) array operating for wireless body area network (WBAN) at the center frequency, <em>f<sub>c</sub></em> of 2.45 GHz.  Precisely, jeans or denim with the relative permittivity, <sub> </sub>= 1.70 and thickness of 1.00 mm is chosen as a substrate attached to SheildIt Super as a conductive material with the thickness, <em>h</em> of 0.17 mm and conductivity of 6.67  10<sup>5</sup> S/m, respectively. In the first stage, a microstrip patch antenna array layout with the inset fed technique is designed and simulated by using the Keysight Advanced Design System (ADS) software.  In the second stage, a wearable textile microstrip patch antenna array is fabricated, integrated, and hidden inside the jeans fabric.  In the third stage, the rectifier circuit layout on the flame retardant-4    (FR-4) printed circuit board (PCB) with the dielectric constant,  = 4.7, thickness, <em>h</em> = 1.6 mm, and loss tangent, <em>δ</em> = 0.018 that can generate radio frequency-direct current (RF-DC) conversion is designed and simulated using the ADS software  Each simulation result and fabrication measurement shows that the designed antenna array characteristics are suitable for an industrial, scientific, and medical radio (ISM) band by having the reflection coefficient, <em>S</em><sub>11</sub> less than -10 decibel (dB) at the respective resonant frequency, <em>f<sub>r</sub>.</em>  Moreover, through simulation, the output DC voltage for the bridge rectifier circuit is from 132 mV to 5.01 V with the corresponding power conversion efficiency (PCE) between 3.48% and 50.20% whereas for the voltage doubler rectifier, the output DC voltage is from 417 mV to 2.91 V with the corresponding PCE between 34.78% and 53.56%, respectively.


The propagation of surface waves in the microstrip patch antenna proves to be proves to serious hindrance to radiation mechanism of the antenna. The periodic arrangement of shorting pins is embedded in the dielectric substrate at specific location to enhance the gain by around 4-5dB. The slotted perturbations have been done for achieving tri-band characteristics. The antenna is suitable for operation at three resonant frequency bands centered at 2.2421 GHz, 5.7632GHz and 7.7633GHz, which makes it suitable for WLAN applications.


Sign in / Sign up

Export Citation Format

Share Document