scholarly journals COVID-19: Disease Pattern Study based on Semantic-Web Approach using Description Logic

Author(s):  
Ria Rawal ◽  
Kartik Goel ◽  
Charu Gupta
2021 ◽  
Vol 178 (4) ◽  
pp. 315-346
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

We present a KE-tableau-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic 𝒟ℒ〈4LQSR,×〉(D) (𝒟ℒD4,×, for short). Our application solves the main TBox and ABox reasoning problems for 𝒟ℒD4,×. In particular, it solves the consistency and the classification problems for 𝒟ℒD4,×-knowledge bases represented in set-theoretic terms, and a generalization of the Conjunctive Query Answering problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and improves a previous version, is implemented in C++. It supports 𝒟ℒD4,×-knowledge bases serialized in the OWL/XML format and it admits also rules expressed in SWRL (Semantic Web Rule Language).


2020 ◽  
Vol 26 (10) ◽  
pp. 1343-1363
Author(s):  
Jisha Maniamma ◽  
Hiroaki Wagatsuma

Bongard Problems (BPs) are a set of 100 visual puzzles introduced by M. M. Bongard in the mid-1960s. BPs have been established as benchmark puzzles for understanding the human context-based learning abilities to solve ill- posed problems. The puzzle requires the logical explanation as the answer to distinct two classes of figures from redundant options, which can be obtained by a thinking process to alternatively change the target frame (hierarchical level of analogy) of thinking from a wide range concept networks as D. R. Hofstadter suggested. Some minor research results to solve a limited set of BPs have reported based a single architecture accompanied with probabilistic approaches; however the central problem on BP's difficulties is the requirement of flexible changes of the target frame, therefore non-hierarchical cluster analyses does not provide the essential solution and hierarchical probabilistic models needs to include unnecessary levels for learning from the beginning to prevent a prompt decision making. We hypothesized that logical reasoning process with limited numbers of meta-data descriptions realizes the sophisticated and prompt decision-making and the performance is validated by using BPs. In this study, a semantic web-based hierarchical model to solve BPs was proposed as the minimum and transparent system to mimic human-logical inference process in solving of BPs by using the Description Logic (DL) with assertions on concepts (TBox) and individuals (ABox). Our results demonstrated that the proposed model not only provided individual solutions as a BP solver, but also proved the correctness of Hofstadter's idea as the flexible frame with concept networks for BPs in our actual implementation, which no one has ever achieved. This fact will open the new horizon for theories for designing of logical reasoning systems especially for critical judgments and serious decision-making as expert humans do in a transparent and descriptive way of why they judged in that manner.


2011 ◽  
pp. 648-669
Author(s):  
Philip D. Smart ◽  
Alia I. Abdelmoty ◽  
Baher A. El-Geresy ◽  
Christopher B. Jones

Geospatial ontologies have a key role to play in the development of the geospatial-Semantic Web, with regard to facilitating the search for geographical information and resources. They normally hold large volumes of geographic information and undergo a continuous process of revision and update. Limitations of the OWL ontology representation language for supporting geospatial domains are discussed and an integrated rule and ontology language is recognized as needed to support the representation and reasoning requirements in this domain. A survey of the current approaches to integrating ontologies and rules is presented and a new framework is proposed that is based on and extends Description Logic Programs. A hybrid representational approach is adopted where the logical component of the framework is used to represent geographical concepts and spatial rules and an external computational geometry processor is used for storing and manipulating the associated geometric data. A sample application is used to demonstrate the proposed language and engine and how they address the identified challenges.


2011 ◽  
pp. 24-43
Author(s):  
J. Bruijn

This chapter introduces a number of formal logical languages which form the backbone of the Semantic Web. They are used for the representation of both ontologies and rules. The basis for all languages presented in this chapter is the classical first-order logic. Description logics is a family of languages which represent subsets of first-order logic. Expressive description logic languages form the basis for popular ontology languages on the Semantic Web. Logic programming is based on a subset of first-order logic, namely Horn logic, but uses a slightly different semantics and can be extended with non-monotonic negation. Many Semantic Web reasoners are based on logic programming principles and rule languages for the Semantic Web based on logic programming are an ongoing discussion. Frame Logic allows object-oriented style (frame-based) modeling in a logical language. RuleML is an XML-based syntax consisting of different sublanguages for the exchange of specifications in different logical languages over the Web.


Sign in / Sign up

Export Citation Format

Share Document