scholarly journals Giant Magnetoresistance and Remanence in Granular CoCu Co-Deposited Films

Author(s):  
A.D.C. Viegas ◽  
J. Geshev ◽  
E.F. Ferrari ◽  
J.E. Schmidt
1994 ◽  
Vol 343 ◽  
Author(s):  
J.D. Jarratt ◽  
J.A. Barnard

ABSTRACTGiant Magnetoresistance (GMR), crystal structure, and magnetic properties have been investigated in a series of sputtered Ni66Fe16Co18/Ag multilayer films with induced uniaxial anisotropy. The film thickness ranges studied were 20 and 25 Å for NiFeCo, and 25 to 50 Å for Ag. GMR was only evident in the films after post-deposition annealing. This onset of GMR is thought to be due to the breaking up of the NiFeCo layers into ferromagnetic platelets or islands by the immiscible Ag diffusing perpendicular to the film plane along the grain boundaries. The magnitude and field sensitivity of the GMR was dependent on the annealing time and temperature. High angle x-ray diffraction (HXRD) was used to reveal the overall film structure and growth texture and low angle XRD (LXRD) was used to investigate the quality of the multilayer structures. M-H hysteresis loops revealed in-plane uniaxial anisotropy in as-deposited films which is eventually eliminated with annealing. The easy axis squareness experiences a pronounced decrease with lower temperature annealing, but then increases slightly with annealing temperature.


1993 ◽  
Vol 313 ◽  
Author(s):  
Michael A. Parker ◽  
K. R. Coffey ◽  
T. L. Hylton ◽  
J. K. Howard

ABSTRACTAlthough Much has been published on giant Magnetoresistance (GMR) in co-deposited thin films [1–4], only little [5] has been published on the structure-property relationships limiting the effect. Here, we report the results of microstructural characterization of NiFeAg thin films that exhibit a GMR effect. The as-deposited films show a sizeable GMR effect. The Maximum GMR effect observed was 6.4% with -4k0e FWHM of the 6P/P peak. Upon annealing these films, the GMR at first increases, and then decreases. We present microstructural evidence from TEM and XRD, amongst other techniques, which shows that this is a consequence of the initial NiFeAg thin film agglomerating into NiFe grains in a predominantly Ag segregant Matrix. Upon extended annealing, excessive grain growth leads to a decrease in the GMR as predicted by the model of Berkowitz, et al. [1].


Author(s):  
S. Herd ◽  
S. M. Mader

Single crystal films in (001) orientation, about 1500 Å thick, were produced by R-F sputtering of Al + 4 wt % Cu onto cleaved KCl at 150°C substrate temperature. The as-deposited films contained numerous θ-CuAl2 particles (C16 structure) about 0.1μ in size. They were transferred onto Mo screens, solution treated and rapidly cooled (within about ½ min) so as to retain a homogeneous solid solution. Subsequently, the films were aged in vacuum at various temperatures in order to induce precipitation and to compare structures and morphologies of precipitate particles in Al-Cu films with those found in age hardened bulk material.Aging for 3 weeks at 60°C or 48 hrs at 100°C did not produce any detectable change in high resolution micrographs or diffraction patterns. In this range Guinier-Preston zones (GP) form in quenched bulk material. The absence of GP in the present experiments in this aging range is perhaps due to the cooling rate employed, which might be more equivalent to an aged and reverted bulk material than to a quenched one.


Author(s):  
Shozo Ikeda ◽  
Hirotoshi Hayakawa ◽  
Daniel R. Dietderich

Pb addition makes easier to form the high Tc phase in the BSCCO system. However, Pb easily vaporized at high temperature. A controlled Pb potential method has been applied to grow the high Tc phase in films. Initially, films are deposited on cleaved MgO substrates using an rf magnetron sputtering system. These amorphous as-deposited films are heat treated in a sealed gold capsule along with a large pellet of Pb-added BSCCO. Details of the process and characterization of the films have been reported elsewhere (1). Films trated for 0.5h at 850° C contain mainly the low Tc phase with a small amount of the high Tc phase. Hawever, films treated for 3h at 850°C consist mainly of the high Tc phase. This film is superconductive with a Tc(zero) of 106K. The Pb/Bi ratio of the films, analysed by SEM- EDS, are 0.12 and 0.18 for heat tratment times of 0.5 and 3h, respectively. The present study investigates the modulated structures of these films using HREM.


1998 ◽  
Vol 22 (4_2) ◽  
pp. 537-540 ◽  
Author(s):  
Y. Seyama ◽  
M. Iijima ◽  
A. Tanaka ◽  
M. Oshiki

1996 ◽  
Vol 444 ◽  
Author(s):  
H. Okumoto ◽  
M. Shimomura ◽  
N. Minami ◽  
Y. Tanabe

AbstractSilicon-based polymers with σconjugated electrons have specific properties; photoreactivity for microlithography and photoconductivity for hole transport materials. To explore the possibility of combining these two properties to develop photoresists with electronic transport capability, photoconductivity of polysilanes is investigated in connection with their photoinduced chemical modification. Increase in photocurrent is observed accompanying photoreaction of poly(dimethylsilane) vacuum deposited films. This increase is found to be greatly enhanced in oxygen atmosphere. Such changes of photocurrent can be explained by charge transfer to electron acceptors from Si dangling bonds postulated to be formed during photoreaction.


2002 ◽  
Vol 722 ◽  
Author(s):  
Ram W. Sabnis ◽  
Mary J. Spencer ◽  
Douglas J. Guerrero

AbstractNovel organic, polymeric materials and processes of depositing thin films on electronics substrates by chemical vapor deposition (CVD) have been developed and the lithographic behavior of photoresist coated over these CVD films at deep ultraviolet (DUV) wavelength has been evaluated. The specific monomers synthesized for DUV applications include [2.2](1,4)- naphthalenophane, [2.2](9,10)-anthracenophane and their derivatives which showed remarkable film uniformity on flat wafers and conformality over structured topography wafers, upon polymerization by CVD. The chemical, physical and optical properties of the deposited films have been characterized by measuring parameters such as thickness uniformity, solubility, conformality, adhesion to semiconductor substrates, ultraviolet-visible spectra, optical density, optical constants, defectivity, and resist compatibility. Scanning electron microscope (SEM) photos of cross-sectioned patterned wafers showed verticle profiles with no footing, standing waves or undercut. Resist profiles down to 0.10 νm dense lines and 0.09 νm isolated lines were achieved in initial tests. CVD coatings generated 96-100% conformal films, which is a substantial improvement over commercial spin-on polymeric systems. The light absorbing layers have high optical density at 248 nm and are therefore capable materials for DUV lithography applications. CVD is a potentially useful technology to extend lithography for sub-0.15 νm devices. These films have potential applications in microelectronics, optoelectronics and photonics.


Sign in / Sign up

Export Citation Format

Share Document