Giant Magnetoresistance Properties in CoFe/Cu Multilayers

1998 ◽  
Vol 22 (4_2) ◽  
pp. 537-540 ◽  
Author(s):  
Y. Seyama ◽  
M. Iijima ◽  
A. Tanaka ◽  
M. Oshiki
Author(s):  
T. Kimura

This chapter discusses the spin-transfer effect, which is described as the transfer of the spin angular momentum between the conduction electrons and the magnetization of the ferromagnet that occurs due to the conservation of the spin angular momentum. L. Berger, who introduced the concept in 1984, considered the exchange interaction between the conduction electron and the localized magnetic moment, and predicted that a magnetic domain wall can be moved by flowing the spin current. The spin-transfer effect was brought into the limelight by the progress in microfabrication techniques and the discovery of the giant magnetoresistance effect in magnetic multilayers. Berger, at the same time, separately studied the spin-transfer torque in a system similar to Slonczewski’s magnetic multilayered system and predicted spontaneous magnetization precession.


2011 ◽  
Vol 98 (4) ◽  
pp. 042503 ◽  
Author(s):  
Tomohiro Taniguchi ◽  
Hiroshi Imamura ◽  
Tomoya M. Nakatani ◽  
Kazuhiro Hono

1996 ◽  
Vol 37 (11) ◽  
pp. 1710-1714 ◽  
Author(s):  
Ryoichi Nakatani ◽  
Katsumi Hoshino ◽  
Hiroyuki Hoshiya ◽  
Yutaka Sugita

Author(s):  
Fanda Meng ◽  
Weisong Huo ◽  
Jie Lian ◽  
Lei Zhang ◽  
Xizeng Shi ◽  
...  

AbstractWe report a microfluidic sandwich immunoassay constructed around a dual-giant magnetoresistance (GMR) sensor array to quantify the heart failure biomarker NT-proBNP in human plasma at the clinically relevant concentration levels between 15 pg/mL and 40 ng/mL. The broad dynamic range was achieved by differential coating of two identical GMR sensors operated in tandem, and combining two standard curves. The detection limit was determined as 5 pg/mL. The assay, involving 53 plasma samples from patients with different cardiovascular diseases, was validated against the Roche Cobas e411 analyzer. The salient features of this system are its wide concentration range, low detection limit, small sample volume requirement (50 μL), and the need for a short measurement time of 15 min, making it a prospective candidate for practical use in point of care analysis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1133
Author(s):  
Nicolas Marchal ◽  
Tristan da Câmara Santa Clara Gomes ◽  
Flavio Abreu Araujo ◽  
Luc Piraux

The versatility of the template-assisted electrodeposition technique to fabricate complex three-dimensional networks made of interconnected nanowires allows one to easily stack ferromagnetic and non-magnetic metallic layers along the nanowire axis. This leads to the fabrication of unique multilayered nanowire network films showing giant magnetoresistance effect in the current-perpendicular-to-plane configuration that can be reliably measured along the macroscopic in-plane direction of the films. Moreover, the system also enables reliable measurements of the analogous magneto-thermoelectric properties of the multilayered nanowire networks. Here, three-dimensional interconnected NixFe1−x/Cu multilayered nanowire networks (with 0.60≤x≤0.97) are fabricated and characterized, leading to large magnetoresistance and magneto-thermopower ratios up to 17% and −25% in Ni80Fe20/Cu, respectively. A strong contrast is observed between the amplitudes of magnetoresistance and magneto-thermoelectric effects depending on the Ni content of the NiFe alloys. In particular, for the highest Ni concentrations, a strong increase in the magneto-thermoelectric effect is observed, more than a factor of 7 larger than the magnetoresistive effect for Ni97Fe3/Cu multilayers. This sharp increase is mainly due to an increase in the spin-dependent Seebeck coefficient from −7 µV/K for the Ni60Fe40/Cu and Ni70Fe30/Cu nanowire arrays to −21 µV/K for the Ni97Fe3/Cu nanowire array. The enhancement of the magneto-thermoelectric effect for multilayered nanowire networks based on dilute Ni alloys is promising for obtaining a flexible magnetic switch for thermoelectric generation for potential applications in heat management or logic devices using thermal energy.


Sign in / Sign up

Export Citation Format

Share Document