High torque density design of a new outer-rotor hybrid excitation flux switching machine for in-wheel drive electric vehicle

Author(s):  
M. Ahmad ◽  
E. Sulaiman
2016 ◽  
Vol 10 (4) ◽  
pp. 591-598 ◽  
Author(s):  
Yusuke Nishiura ◽  
◽  
Katsuhiro Hirata ◽  
Yo Sakaidani ◽  

Conventionally, many single-degree-of-freedom (single-DOF) actuators have been used to realize devices with multiple-degrees-of-freedom (multi-DOF). However, this makes their structures larger, heavier, and more complicated. In order to remove these drawbacks, the development of spherical actuators with multi-DOF is necessary. In this paper, we propose a new 3-DOF outer rotor electromagnetic spherical actuator with high torque density and wide rotation angles. The dynamic characteristics are computed employing 3-D FEM and its effectiveness is verified by carrying out measurements on a prototype. Then, in order to realize further high torque density, the electromagnetic pole arrangement is optimized using Genetic Algorithm (GA) and the effectiveness of the optimized stator poles arrangement is verified.


Author(s):  
Enwelum I. Mbadiwe ◽  
Erwan Sulaiman ◽  
Zarafi Md. Ahmad ◽  
M.F. Omar

<span lang="EN-US">A breakthrough in this century has been the development of electric vehicle which is propelled by electric motor powered by electricity. Already, many electric motors have been used for electric vehicle application but performances are low. In this paper, a permanent magnet motor technology using unconventional segmented rotor for high torque application is presented. Unlike conventional motors, this design, flux switching motor (FSM) is an advance form of synchronous machine with double rotating frequency. It accommodates both armature winding and flux source on the stator while the rotor is a simple passive laminated sheet steel. Conventionally, rotor of the maiden FSM and many emerging designs have focused on the salient pole, this design employs segmented rotor. Segmented rotor has advantages of short flux path more than salient rotor pole resulting in high flux linkage. Geometric topology of the proposed motor is introduced. It consists of 24Stator-14Pole using PM flux source with alternate stator tooth armature winding. The 2D-FEA model utilized JMAG Tool Solver to design and analyze motor’s performance in terms of torque with average torque output of 470Nm. The suitability of segmented outer-rotor FS motor as a high torque machine, using permanent magnet technology is a reliable candidate for electric vehicle.</span>


2012 ◽  
Vol 48 (6) ◽  
pp. 2287-2295 ◽  
Author(s):  
Saurabh P. Nikam ◽  
Vandana Rallabandi ◽  
B. G. Fernandes

Sign in / Sign up

Export Citation Format

Share Document