Hybrid information gain based fuzzy roughset feature selection in cancer microarray data

Author(s):  
Arunkumar Chinnaswamy ◽  
Ramakrishnan Srinivasan
Author(s):  
Arunkumar Chinnaswamy ◽  
Ramakrishnan Srinivasan

The process of Feature selection in machine learning involves the reduction in the number of features (genes) and similar activities that results in an acceptable level of classification accuracy. This paper discusses the filter based feature selection methods such as Information Gain and Correlation coefficient. After the process of feature selection is performed, the selected genes are subjected to five classification problems such as Naïve Bayes, Bagging, Random Forest, J48 and Decision Stump. The same experiment is performed on the raw data as well. Experimental results show that the filter based approaches reduce the number of gene expression levels effectively and thereby has a reduced feature subset that produces higher classification accuracy compared to the same experiment performed on the raw data. Also Correlation Based Feature Selection uses very fewer genes and produces higher accuracy compared to Information Gain based Feature Selection approach.


2011 ◽  
Vol 03 (01n02) ◽  
pp. 127-148 ◽  
Author(s):  
LIPING JING ◽  
MICHAEL K. NG ◽  
TIEYONG ZENG

Microarray data profiles gene expression on a whole genome scale, and provides a good way to study associations between gene expression and occurrence or progression of cancer disease. Many researchers realized that microarray data is useful to predict cancer cases. However, the high dimension of gene expressions, which is significantly larger than the sample size, makes this task very difficult. It is very important to identify the significant genes causing cancer. Many feature selection algorithms have been proposed focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for significant genes selection and efficient cancer case classification. The proposed framework first performs a clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects (1) the significant (2) genes in each group using the Bayesian Lasso method and important gene groups using the group Lasso method, and finally builds a prediction model based on the shrinkage gene space with efficient classification algorithm (such as support vector machine (SVM), 1NN, and regression). Experimental results on public available microarray data show that the proposed framework often outperforms the existing feature selection and prediction methods such as SAM, information gain (IG), and Lasso-type prediction models.


2021 ◽  
Vol 15 (8) ◽  
pp. 912-926
Author(s):  
Ge Zhang ◽  
Pan Yu ◽  
Jianlin Wang ◽  
Chaokun Yan

Background: There have been rapid developments in various bioinformatics technologies, which have led to the accumulation of a large amount of biomedical data. However, these datasets usually involve thousands of features and include much irrelevant or redundant information, which leads to confusion during diagnosis. Feature selection is a solution that consists of finding the optimal subset, which is known to be an NP problem because of the large search space. Objective: For the issue, this paper proposes a hybrid feature selection method based on an improved chemical reaction optimization algorithm (ICRO) and an information gain (IG) approach, which called IGICRO. Methods: IG is adopted to obtain some important features. The neighborhood search mechanism is combined with ICRO to increase the diversity of the population and improve the capacity of local search. Results: Experimental results of eight public available data sets demonstrate that our proposed approach outperforms original CRO and other state-of-the-art approaches.


2018 ◽  
Vol 7 (1) ◽  
pp. 57-72
Author(s):  
H.P. Vinutha ◽  
Poornima Basavaraju

Day by day network security is becoming more challenging task. Intrusion detection systems (IDSs) are one of the methods used to monitor the network activities. Data mining algorithms play a major role in the field of IDS. NSL-KDD'99 dataset is used to study the network traffic pattern which helps us to identify possible attacks takes place on the network. The dataset contains 41 attributes and one class attribute categorized as normal, DoS, Probe, R2L and U2R. In proposed methodology, it is necessary to reduce the false positive rate and improve the detection rate by reducing the dimensionality of the dataset, use of all 41 attributes in detection technology is not good practices. Four different feature selection methods like Chi-Square, SU, Gain Ratio and Information Gain feature are used to evaluate the attributes and unimportant features are removed to reduce the dimension of the data. Ensemble classification techniques like Boosting, Bagging, Stacking and Voting are used to observe the detection rate separately with three base algorithms called Decision stump, J48 and Random forest.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


Sign in / Sign up

Export Citation Format

Share Document