Scanning fiber-optic nonlinear endomicroscopy for in vivo histology

Author(s):  
Wenxuan Liang ◽  
Gunnsteinn Hall ◽  
Ming-Jun Li ◽  
Xingde Li
Keyword(s):  
PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e111488 ◽  
Author(s):  
Kamal R. Dhakal ◽  
Ling Gu ◽  
Shivaranjani Shivalingaiah ◽  
Torry S. Dennis ◽  
Samara A. Morris-Bobzean ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 251
Author(s):  
Mandeep Kaur ◽  
Pierre M. Lane ◽  
Carlo Menon

Endoscopes are used routinely in modern medicine for in-vivo imaging of luminal organs. Technical advances in the micro-electro-mechanical system (MEMS) and optical fields have enabled the further miniaturization of endoscopes, resulting in the ability to image previously inaccessible small-caliber luminal organs, enabling the early detection of lesions and other abnormalities in these tissues. The development of scanning fiber endoscopes supports the fabrication of small cantilever-based imaging devices without compromising the image resolution. The size of an endoscope is highly dependent on the actuation and scanning method used to illuminate the target image area. Different actuation methods used in the design of small-sized cantilever-based endoscopes are reviewed in this paper along with their working principles, advantages and disadvantages, generated scanning patterns, and applications.


1993 ◽  
Vol 47 (5) ◽  
pp. 590-597 ◽  
Author(s):  
Stephane Mottin ◽  
Canh Tran-Minh ◽  
Pierre Laporte ◽  
Raymond Cespuglio ◽  
Michel Jouvet

At pH 7 and with the excitation at wavelengths above 315 nm, previously unreported fluorescence of 5-HT (5-hydroxytryptamine) is observed. Two fluorescence bands were observed for 5-HT; the first emits at around 390 nm with an associated lifetime near 1 ns, and the other (well known) emits at 340 nm with an associated lifetime of 2.7 ns. With both static and time-resolved fluorescences, the spectral and temporal effects of the excitation wavelength were studied between 285 and 340 nm. With these basic spectroscopic properties as a starting point, a fiber-optic chemical sensor (FOCS) was developed in order to measure 5-HT with a single-fiber configuration, nitrogen laser excitation, and fast digitizing techniques. Temporal effects including fluorescence of the optical fiber were studied and compared with measurements both directly in cuvette and through the fiber-optic sensor. Less than thirty seconds are required for each measurement. A detection limit of 5-HT is reached in the range of 5 μM. Our system, with an improved sensitivity, could therefore be a possible and convenient “tool” for in vivo determination of 5-HT.


Theranostics ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 3517-3526 ◽  
Author(s):  
Kan Lin ◽  
Wei Zheng ◽  
Chwee Ming Lim ◽  
Zhiwei Huang

2008 ◽  
Vol 161 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Jinjun Jiang ◽  
Lei Gao ◽  
Wei Zhong ◽  
Shen Meng ◽  
Ben Yong ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document