Extremely High-Order Multiphoton Thomson Scattering: Synchrotron Hard X-Rays from Ultra-Intense Laser Light

Author(s):  
Donald Umstadter
2007 ◽  
Vol 21 (03n04) ◽  
pp. 465-472
Author(s):  
FUMIO SAKAI ◽  
TERUNOBU NAKAJYO ◽  
TATSUYA YANAGIDA ◽  
SHINJI ITO

A compact, high-brightness x-ray source has been developed through Thomson scattering between photons and relativistic electrons. 33keV energy photons (maximum) were generated in a 165-degree interaction configuration with 38MeV electrons and 800nm-wavelength Ti :sapphire laser light. The number of total photons generated at an interaction point was 106 photons/pulse for a 0.8nC electron bunch charge and 150mJ laser pulse energy. In a 90-degree interaction configuration, 105 photons/pulse total photons were obtained (maximum). Transverse profiles of x-ray intensity and energy were measured by an x-ray CCD camera. These experiment profiles agreed with the analytical results. Imaging using this x-ray source was demonstrated as an application. X-ray images for some objects were taken with various lengths between the objects and the camera. As a result, the refraction contrast images were observed with 17keV x-rays.


2021 ◽  
Vol 6 (1) ◽  
pp. 1891001
Author(s):  
M. Siano ◽  
B. Paroli ◽  
M. A. C. Potenza
Keyword(s):  

2020 ◽  
Vol 30 (2) ◽  
pp. 99
Author(s):  
Ngoc-Loan Phan

Atom in a coherent superposition state reveals an advantage in the enhancement conversion efficiency of high-order harmonic generation (HHG), which is meaningful in producing attosecond pulses. In this study, we expand to investigate a more complicated system, H\(_2^+\) molecule in the superposition of the ground and second excited states, exposed to an ultrashort intense laser pulse by numerically solving the time-dependent Schrödinger equation. Firstly, we examine the enhancement of HHG from this system. Then, we study the depletion effect on the cutoff energy of HHG spectra with the coherent superposition state. We found that these effects on the HHG from molecules are similar to those from atoms. Finally, we study the signature of the interesting effect, which is absent for atoms -- two-center interference effect in the HHG from H\(_2^+\) in the coherent superposition state. We recognize that the minimum positions in HHG from molecules in the superposition state, and in the pure ground state are the same. Especially, for weak laser intensity, in the HHG with the superposition state, the minimum due to the interference effect is apparent, while it is invisible in the HHG from pure ground state. As a result, in comparison with the ground-state molecule, the coherent molecule can be used as a more accurate tool to determine the internuclear distance of molecule.


Sign in / Sign up

Export Citation Format

Share Document