Design of Crop Growing Environment Monitoring System Based on Information Fusion Theory

Author(s):  
Huan Liu ◽  
Yuanshu Jiang ◽  
Lijing Qin
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lijuan Xu ◽  
Lihong Zhang ◽  
Zhenhua Du

With the problem of nuclear leakage being concerned by more and more industries, the research of coastal ecological environment monitoring has become more and more important. Therefore, it is necessary to study the current unsystematic coastal ecological environment monitoring and protection system. Aiming at the accuracy of feature fusion and representation of single short environment information, this paper compares the classification effects of the three fusion methods on four classifiers: logistic regression, SVM, random forest, and naive Bayes, to verify the effectiveness of LDA and DS model fusion and determine the consistency vector representation method of short environment information data. This paper collects and analyzes the coastal data in recent years using multisource information fusion decision-making. In this paper, DS (Dempster Shafer) evidence algorithm is used to collect the data of coastal salinization degree and air relative humidity, and then, the DS feature matching model is introduced to fuse the whole index system. The method in the article completes the standardized and standardized processing of monitoring data digital conversion, quality control, and data classification, forms interrelated four-dimensional spatiotemporal data, and establishes a distributed, object-oriented, Internet-oriented dynamic management real-time and delayed database. Finally, this paper carries out tree decision processing on the coastal ecological environment monitoring data of multisource information fusion, to achieve the extraction and intuitive analysis of special data, and puts forward targeted protection strategies for the coastal ecological environment according to the data results of the DS algorithm. The research shows that the number of indicators in multisource information fusion in this paper is 16, a total of 3251 data, 2866 meaningful information, and 1869 data including ecological cycle. These data are the results of the collection of multi-information data. Based on the multilevel nature of the existing marine environment three-dimensional monitoring system, the study established a comprehensive resource-guaranteed framework and divided it into four levels according to the level of the marine monitoring system: country, sea area, locality, and data access point. In specific analysis, the guarantee resources involved in each level are introduced. On the basis of in-depth analysis of the requirements of the marine environment three-dimensional monitoring system operation guarantee and the guarantee resource structure, the marine environment three-dimensional monitoring operation comprehensive guarantee system is described from the internal structure and the external connection. The DS algorithm extracts the status information resources of various marine environment three-dimensional monitoring systems, through the interaction of various subsystems, realizes the operation and maintenance of the monitoring system, and provides various technical supports such as system evaluation and failure analysis. After multisource information fusion and decision-making, it is obtained that the index equilibrium module in the DS algorithm in this paper is 0.52, the sensitivity is 0.68, and the independence is 0.42. Among them, the range of sensitivity is the largest. In the simulation results, the eco-economic coefficient can be increased from 12% to 36%. Therefore, using the method of multisource information fusion for quantitative index analysis can provide data support for coastal ecological environment detection, to establish a more perfect protection system.


2014 ◽  
Vol 912-914 ◽  
pp. 1440-1443
Author(s):  
Fei Lao ◽  
Guo Xin Li

Because the extensive management of the tradational agriculture hinders the development of the agriculture,we advise the system based on the inteent of things,which design and implent the crop growing enviornment.This article describes the meaning and the functions of the system in details,which also describes the architecture ,hardware components and software design.The design of the system promotes the rapid development of the precision agriculture.


Author(s):  
Supun Athukorala ◽  
Irunika Weeraratne ◽  
Dumindu Jayathilaka ◽  
Asitha Bandaranayake ◽  
Roshan Ragel

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1400
Author(s):  
Sun Park ◽  
JongWon Kim

The strawberry market in South Korea is actually the largest market among horticultural crops. Strawberry cultivation in South Korea changed from field cultivation to facility cultivation in order to increase production. However, the decrease in production manpower due to aging is increasing the demand for the automation of strawberry cultivation. Predicting the harvest of strawberries is an important research topic, as strawberry production requires the most manpower for harvest. In addition, the growing environment has a great influence on strawberry production as hydroponic cultivation of strawberries is increasing. In this paper, we design and implement an integrated system that monitors strawberry hydroponic environmental data and determines when to harvest with the concept of IoT-Edge-AI-Cloud. The proposed monitoring system collects, stores and visualizes strawberry growing environment data. The proposed harvest decision system classifies the strawberry maturity level in images using a deep learning algorithm. The monitoring and analysis results are visualized in an integrated interface, which provides a variety of basic data for strawberry cultivation. Even if the strawberry cultivation area increases, the proposed system can be easily expanded and flexibly based on a virtualized container with the concept of IoT-Edge-AI-Cloud. The monitoring system was verified by monitoring a hydroponic strawberry environment for 4 months. In addition, the harvest decision system was verified using strawberry pictures acquired from Smart Berry Farm.


2017 ◽  
Vol 13 (08) ◽  
pp. 4
Author(s):  
Yong Jin ◽  
Zhenjiang Qian ◽  
Xiaoshuang Xing ◽  
Lu Shen

ensor nodes vulnerable becomes a major bottleneck restricting the wide application of wireless sensor networks WSNs (Wireless Sensor Networks). In order to satisfy the needs of industrial production and daily living environment monitoring, it is important to improve the survivability of wireless sensor networks in environmental monitoring application. In order to have a reliable environment monitoring system, this paper analyzed the damage types and causes of WSNs and the measurement methods of WSNs survivability. Then, we studied the fault detection method and finally realized the design can improve the survivability of the scheme. The robust guarantee scheme through hardware design and algorithm model, realized the remote wireless communication services and prolonged the network life cycle, so as to improve the survivability of the environmental monitoring system.


Sign in / Sign up

Export Citation Format

Share Document