Quantitative Comparison of Distance Estimation Performance between TLS-MP and iFFT Methods in IEEE 802.15.4a Channel Models Using PSFM Radar Technique

Author(s):  
Yan Wu ◽  
Niko Joram ◽  
Rainer T Hach
2015 ◽  
Vol 15 (2) ◽  
pp. 58-63 ◽  
Author(s):  
Miroslav Botta ◽  
Milan Simek ◽  
Ondrej Krajsa ◽  
Vladimir Cervenka ◽  
Tamas Pal

Abstract This study deals with the distance estimation issue in low-power wireless systems being usually used for sensor networking and interconnecting the Internet of Things. There is an effort to locate or track these sensor entities for different needs the radio signal time of flight principle from the theoretical and practical side of application research is evaluated. Since these sensor devices are mainly targeted for low power consumption appliances, there is always need for optimization of any aspects needed for regular sensor operation. For the distance estimation we benefit from IEEE 802.15.4a technology, which offers the precise ranging capabilities. There is no need for additional hardware to be used for the ranging task and all fundamental measurements are acquired within the 15.4a standard compliant hardware in the real environment. The proposed work examines the problems and the solutions for implementation of distance estimation algorithms for WSN devices. The main contribution of the article is seen in this real testbed evaluation of the ranging technology.


Author(s):  
P.R. Smith ◽  
W.E. Fowler ◽  
U. Aebi

An understanding of the specific interactions of actin with regulatory proteins has been limited by the lack of information about the structure of the actin filament. Molecular actin has been studied in actin-DNase I complexes by single crystal X-ray analysis, to a resolution of about 0.6nm, and in the electron microscope where two dimensional actin sheets have been reconstructed to a maximum resolution of 1.5nm. While these studies have shown something of the structure of individual actin molecules, essential information about the orientation of actin in the filament is still unavailable.The work of Egelman & DeRosier has, however, suggested a method which could be used to provide an initial quantitative estimate of the orientation of actin within the filament. This method involves the quantitative comparison of computed diffraction data from single actin filaments with diffraction data derived from synthetic filaments constructed using the molecular model of actin as a building block. Their preliminary work was conducted using a model consisting of two juxtaposed spheres of equal size.


Author(s):  
Stuart McKernan

For many years the concept of quantitative diffraction contrast experiments might have consisted of the determination of dislocation Burgers vectors using a g.b = 0 criterion from several different 2-beam images. Since the advent of the personal computer revolution, the available computing power for performing image-processing and image-simulation calculations is enormous and ubiquitous. Several programs now exist to perform simulations of diffraction contrast images using various approximations. The most common approximations are the use of only 2-beams or a single systematic row to calculate the image contrast, or calculating the image using a column approximation. The increasing amount of literature showing comparisons of experimental and simulated images shows that it is possible to obtain very close agreement between the two images; although the choice of parameters used, and the assumptions made, in performing the calculation must be properly dealt with. The simulation of the images of defects in materials has, in many cases, therefore become a tractable problem.


2012 ◽  
Author(s):  
Barbara J. Wright ◽  
Lindsey Clement ◽  
Danielle Atkins ◽  
Mia Park ◽  
Krista Bond ◽  
...  

2012 ◽  
Author(s):  
Matthew E. Jacovina ◽  
David N. Rapp
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document