Toward an alignment of the actin molecule within the actin filament

Author(s):  
P.R. Smith ◽  
W.E. Fowler ◽  
U. Aebi

An understanding of the specific interactions of actin with regulatory proteins has been limited by the lack of information about the structure of the actin filament. Molecular actin has been studied in actin-DNase I complexes by single crystal X-ray analysis, to a resolution of about 0.6nm, and in the electron microscope where two dimensional actin sheets have been reconstructed to a maximum resolution of 1.5nm. While these studies have shown something of the structure of individual actin molecules, essential information about the orientation of actin in the filament is still unavailable.The work of Egelman & DeRosier has, however, suggested a method which could be used to provide an initial quantitative estimate of the orientation of actin within the filament. This method involves the quantitative comparison of computed diffraction data from single actin filaments with diffraction data derived from synthetic filaments constructed using the molecular model of actin as a building block. Their preliminary work was conducted using a model consisting of two juxtaposed spheres of equal size.

2000 ◽  
Vol 643 ◽  
Author(s):  
Michael A. Estermann ◽  
Katja Lemster ◽  
Walter Steurer

AbstractMethods for the ab initio structure analysis of periodic approximant phases from single- crystal X-ray diffraction data are presented. These methods are particularly suited to complex approximant structures with large unit cells and strong pseudosymmetry (where routine X-ray structure solution tools fail) and are based on the “brute-force” deconvolution of the experimentally measured autocorrelation function. This function is obtained directly by a simple Fourier transform of the measured X-ray diffraction intensities. Sub-optimal diffraction data from twinned, nanodomain and polycrystalline specimens can be processed despite the inevitable lack of information due to reflection overlap and limited resolution. The deconvolution process allows complex approximant structures to be unraveled without prior knowledge about the structure-building motifs. Examples are presented for the systems Al-Co-Ni and Al-Co-(Ta).


Author(s):  
J. C. Russ ◽  
T. Taguchi ◽  
P. M. Peters ◽  
E. Chatfield ◽  
J. C. Russ ◽  
...  

Conventional SAD patterns as obtained in the TEM present difficulties for identification of materials such as asbestiform minerals, although diffraction data is considered to be an important method for making this purpose. The preferred orientation of the fibers and the spotty patterns that are obtained do not readily lend themselves to measurement of the integrated intensity values for each d-spacing, and even the d-spacings may be hard to determine precisely because the true center location for the broken rings requires estimation. We have implemented an automatic method for diffraction pattern measurement to overcome these problems. It automatically locates the center of patterns with high precision, measures the radius of each ring of spots in the pattern, and integrates the density of spots in that ring. The resulting spectrum of intensity vs. radius is then used just as a conventional X-ray diffractometer scan would be, to locate peaks and produce a list of d,I values suitable for search/match comparison to known or expected phases.


Author(s):  
U. Aebi ◽  
R. Millonig ◽  
H. Salvo

To date, most 3-D reconstructions of undecorated actin filaments have been obtained from actin filament paracrystal data (for refs, see 1,2). However, due to the fact that (a) the paracrystals may be several filament layers thick, and (b) adjacent filaments may sustantially interdigitate, these reconstructions may be subject to significant artifacts. None of these reconstructions has permitted unambiguous tracing or orientation of the actin subunits within the filament. Furthermore, measured values for the maximal filament diameter both determined by EM and by X-ray diffraction analysis, vary between 6 and 10 nm. Obviously, the apparent diameter of the actin filament revealed in the EM will critically depend on specimen preparation, since it is a rather flexible supramolecular assembly which can easily be bent or distorted. To resolve some of these ambiguities, we have explored specimen preparation conditions which may preserve single filaments sufficiently straight and helically ordered to be suitable for single filament 3-D reconstructions, possibly revealing molecular detail.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


1984 ◽  
Vol 140 (2-3) ◽  
pp. 202-205 ◽  
Author(s):  
Walter Morisset ◽  
Werner Wehrmeyer ◽  
Tilman Schirmer ◽  
Wolfram Bode

2021 ◽  
Vol 235 ◽  
pp. 151696
Author(s):  
Joshua Gawlitza ◽  
Jakob Steinhäuser ◽  
Arno Bücker ◽  
Gabriela Krasteva-Christ ◽  
Thomas Tschernig

2021 ◽  
Author(s):  
Anna Agnieszka Hoser ◽  
Marcin Sztylko ◽  
Damian Trzybiński ◽  
Anders Østergaard Madsen

A framework for estimation of thermodynamic properties for molecular crystals via refinement of frequencies from DFT calculations against X-ray diffraction data is presented. The framework provides an efficient approach to...


Sign in / Sign up

Export Citation Format

Share Document