Water Cycle Algorithm based Intelligent Controller for Frequency Regulation of Dual Area Hybrid System with Time Delays

Author(s):  
Ch.Naga Sai Kalyan
Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5387
Author(s):  
Ch. Naga Sai Kalyan ◽  
B. Srikanth Goud ◽  
Ch. Rami Reddy ◽  
Haitham S. Ramadan ◽  
Mohit Bajaj ◽  
...  

This paper puts forward the implementation of an intelligent type II fuzzy PID (T2-FPID) controller tweaked with a water cycle algorithm (WCA), subjected to an error multiplied with time area over integral (ITAE) objective index for regularizing the variations in frequency and interline power flow of an interconnected power system during load disturbances. The WCA-based T2-FPID is tested on a multi-area (MA) system comprising thermal-hydro-nuclear (THN) (MATHN) plants in each area. The dynamical behavior of the system is analyzed upon penetrating area 1 with a step load perturbation (SLP) of 10%. However, power system practicality constraints, such as generation rate constraints (GRCs) and time delays in communication (CTDs), are examined. Afterward, a territorial control scheme of a superconducting magnetic energy storage system (SMES) and a unified power flow controller (UPFC) is installed to further enhance the system performance. The dominancy of the presented WCA-tuned T2-FPID is revealed by testing it on a widely used dual-area hydro-thermal (DAHT) power system model named test system 1 in this paper. Analysis reveals the efficacy of the presented controller with other approaches reported in the recent literature. Finally, secondary and territorial regulation schemes are subjected to sensitivity analysis to deliberate the robustness.


2019 ◽  
Vol 7 (3) ◽  
pp. 117
Author(s):  
Abeer Shaban Omar ◽  
Hany M. Hasanien ◽  
Ahmed Al-Durra ◽  
Walid H. Abd El-Hameed

Author(s):  
Lionel Alangeh Ngobesing ◽  
Yılmaz Atay

Abstract: In network science and big data, the concept of finding meaningful infrastructures in networks has emerged as a method of finding groups of entities with similar properties within very complex systems. The whole concept is generally based on finding subnetworks which have more properties (links) amongst nodes belonging to the same cluster than nodes in other groups (A concept presented by Girvan and Newman, 2002). Today meaningful infrastructure identification is applied in all types of networks from computer networks, to social networks to biological networks. In this article we will look at how meaningful infrastructure identification is applied in biological networks. This concept is important in biological networks as it helps scientist discover patterns in proteins or drugs which helps in solving many medical mysteries. This article will encompass the different algorithms that are used for meaningful infrastructure identification in biological networks. These include Genetic Algorithm, Differential Evolution, Water Cycle Algorithm (WCA), Walktrap Algorithm, Connect Intensity Iteration Algorithm (CIIA), Firefly algorithms and Overlapping Multiple Label Propagation Algorithm. These al-gorithms are compared with using performance measurement parameters such as the Mod-ularity, Normalized Mutual Information, Functional Enrichment, Recall and Precision, Re-dundancy, Purity and Surprise, which we will also discuss here.


Sign in / Sign up

Export Citation Format

Share Document