Selective harmonic elimination PWM using ant colony optimization

Author(s):  
Mahmoud Babaei ◽  
Hassan Rastegar
2021 ◽  
Vol 8 (5) ◽  
pp. 769-774
Author(s):  
Neerudi Bhoopal ◽  
Dokku Sivanaga Malleswara Rao ◽  
Bharath Kumar Narukullapati ◽  
Idamakanti Kasireddy ◽  
Devineni Gireesh Kumar

This paper proposed a new topology of a symmetric single-phase multilevel inverter with the smaller number of semiconductor switches and optimized low-frequency control methods to optimize the Total Harmonic Distortion. A nine-level single phase output is obtained by eight number of active semiconductor switches, four diodes and four capacitors from two asymmetrical dc sources. The selected harmonic order in the output voltage is eliminated by the PWM (SHE-PWM) based on selective harmonic elimination. To optimize the switching angles, an ant colony optimization is introduced. The proposed SHE-PWM and ant optimization are implemented and tested for THD on the SIMULINK platform. The proposed approach offers less THD and is best suited to high-power applications with medium voltage.


2021 ◽  
Vol 13 (16) ◽  
pp. 9035
Author(s):  
Mohammad Ali ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
Ripon K. Chakrobortty ◽  
Basem Alamri ◽  
...  

In this article, the UXE-Type inverter is considered for eleven-level operation. This topology exhibits a boosting capability along with reduced switches and one source. An algorithm that utilizes the redundant states to control the voltage-balance of the auxiliary direct current (DC)-link is presented. The proposed control algorithm is capable of maintaining the voltages of each capacitor at Vdc/4 resulting in a successful multilevel operation for all values of load. The inverter is also compared with 11-level inverters. The modulation of the inverter is performed by employing nearest level control and ant colony optimization based selective harmonic elimination. The maximum inverter efficiency is 98.1% and its performance is validated on an hardware-in-the-loop platform.


2017 ◽  
Vol 7 (1.3) ◽  
pp. 150
Author(s):  
Selvakumar R ◽  
M Sujatha ◽  
S Palanikumar

This paper introduces a new Hybrid MPPT algorithm by combining new Ant Colony Optimization (ACO) and Perturb & Observe (P&O) method. The maximum power from a solar panel is extracted from all conditions like solar irradiance variation, temperature variation and partial shading conditions. Ant Colony Optimization (ACO) method tracks maximum power from panel under all variations and Perturb & Observe algorithm used in final stage to achieve faster MPP tracking. This proposed algorithm is implemented both in Simulink and hardware. A 5kWp grid connected solar photovoltaic power plant is designed and implemented for the 15 stage 31 level Cascaded Multilevel Inverter (CMLI) with the Selective harmonic elimination algorithm. From the analysis of results, it is found that the proposed hybrid MPPT provides higher MPP tracking performance in any weather conditions compared with other MPPT algorithms


2012 ◽  
Vol 614-615 ◽  
pp. 1530-1533 ◽  
Author(s):  
Cun Gang Hu ◽  
San Shan Liu ◽  
Ye Yuan ◽  
Hua Zhong Chen

This paper introduces a selective harmonic elimination (SHE) PWM method based on neutral-point potential balancing applied to a three-level Photovoltaic NPC Inverter. The method combines the SHE with neutral-point potential balancing, and introduces a method based on multi-objective ant colony algorithm to solve the SHE-PWM non-linear equations. SHE-PWM control method of multi-objective ant colony algorithm considering about neutral-point potential balancing, there is no need to solve the initial value of the equation when solving the SHEPWM equations. Experimental results demonstrate the validity of SHE-PWM method based on neutral-point potential balancing.


2012 ◽  
Author(s):  
Earth B. Ugat ◽  
Jennifer Joyce M. Montemayor ◽  
Mark Anthony N. Manlimos ◽  
Dante D. Dinawanao

2012 ◽  
Vol 3 (3) ◽  
pp. 122-125
Author(s):  
THAHASSIN C THAHASSIN C ◽  
◽  
A. GEETHA A. GEETHA ◽  
RASEEK C RASEEK C

Author(s):  
Achmad Fanany Onnilita Gaffar ◽  
Agusma Wajiansyah ◽  
Supriadi Supriadi

The shortest path problem is one of the optimization problems where the optimization value is a distance. In general, solving the problem of the shortest route search can be done using two methods, namely conventional methods and heuristic methods. The Ant Colony Optimization (ACO) is the one of the optimization algorithm based on heuristic method. ACO is adopted from the behavior of ant colonies which naturally able to find the shortest route on the way from the nest to the food sources. In this study, ACO is used to determine the shortest route from Bumi Senyiur Hotel (origin point) to East Kalimantan Governor's Office (destination point). The selection of the origin and destination points is based on a large number of possible major roads connecting the two points. The data source used is the base map of Samarinda City which is cropped on certain coordinates by using Google Earth app which covers the origin and destination points selected. The data pre-processing is performed on the base map image of the acquisition results to obtain its numerical data. ACO is implemented on the data to obtain the shortest path from the origin and destination point that has been determined. From the study results obtained that the number of ants that have been used has an effect on the increase of possible solutions to optimal. The number of tours effect on the number of pheromones that are left on each edge passed ant. With the global pheromone update on each tour then there is a possibility that the path that has passed the ant will run out of pheromone at the end of the tour. This causes the possibility of inconsistent results when using the number of ants smaller than the number of tours.


Sign in / Sign up

Export Citation Format

Share Document