Applying adaptive protection scheme to mitigate the impact of distributed generator on existing distribution network

Author(s):  
Saad. M. Saad ◽  
Naser El Naily ◽  
Abdelsalam Elhaffar ◽  
K. El-Arroudi ◽  
Faisal A. Mohamed
2017 ◽  
Vol 41 (6) ◽  
pp. 383-396 ◽  
Author(s):  
Naser El Naily ◽  
Saad M Saad ◽  
Zakariya Rajab ◽  
Faisal Mohamed

Although integration of wind distributed generation directly into the distribution level has considerable advantages, increased penetration of wind distributed generation (renewable distributed generation) alters the network configuration and jeopardizes the protection system operation and system stability; for this reason, necessary changes in power system protection philosophy must be achieved. Modern numerical relays offer extraordinary features and fast and accurate methods for spotting and detecting different unbalanced operating conditions and can be used to mitigate the influence of integrating wind distributed generation into distribution network. In this study, an adaptive directional negative protective scheme was implemented in the medium-level distribution network to investigate and evaluate the performance of protection system and introduce new adaptive protective scheme based on negative overcurrent protection to increase the selectivity and sensitivity of the protection system in case of unbalanced faulty conditions. The medium-level distribution network of Libya Eastern electric network had been implemented in ETAP software to address and evaluate the efficiency of the proposed approach.


2014 ◽  
Vol 51 (4) ◽  
pp. 292-305 ◽  
Author(s):  
Saša Stojković ◽  
Miroslav Bjekić ◽  
ŽArko Janda

This work presents the use of the modern software tool Alternative Transients Program (ATP) in the teaching of power engineering, within the course Computer Aided Engineering. A simulation model is presented through which it is possible to analyse the effects of distributed generators (DG) on the operation of a distribution network in both a steady and a transient state, with the objective of fulfilling the conditions for connection. This problem was selected not only because it allows students to gain proper insight into the phenomena within a distribution network with a connected distributed generator, but also because it has been shown that the problem of educating engineers is often a constraining factor for implementing distributed generation (DG). It is shown that by using the software tool ATP-EMTP, very complex phenomena in large networks can be studied without great difficulty or the need for analytical methods. The problem-based learning (PBL) method was applied.


2012 ◽  
Vol 433-440 ◽  
pp. 5924-5929 ◽  
Author(s):  
Jie Dong ◽  
Ya Jun Rong ◽  
Chun Jiang Zhang

With the connection of distributed generation (DG), structure of traditional distribution network changes and original relay protection scheme should be adjusted. On the basis of introducing the concept and advantages of distributed generation, this paper discusses the influence of distributed generation with different position or different capacity on current protection. The paper analyzes magnitude and distribution of fault current under short-circuit condition and change curves of fault current are given, which provides some theoretical basis for new relay protection scheme.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2628
Author(s):  
Mohamed Abdelhamid ◽  
Salah Kamel ◽  
Ahmed Korashy ◽  
Marcos Tostado-Véliz ◽  
Fahd A Banakhr ◽  
...  

This paper presents an adaptive protection scheme (APS) for solving the coordination problem that deals with coordination directional overcurrent relays (DOCRs) and distance relays second zone time, in relation to coordination with DOCRs. The coordination problem becomes more complex with the impact of renewable energy sources (RES) when added to the distribution grid. This leads to a change in the grid topology, caused by the on/off states of the distribution generators (DG). The frequency of topological changes in distribution grids poses a challenge to the power system’s protection components. The change in the state of DGs leads to malfunction in reliability and miscoordination between protection relays, since that causes a direct effect to the short circuit currents. This paper used the school-based optimization (SBO) algorithm, which simulates the educational process, in order to deal with coordination problems. That algorithm is modified (MSBO) by modified both learning and teaching processes. The IEEE 8-bus test system and IEEE 14-bus distribution network are used to validate the proposed coordination system’s effectiveness when dealing with the coordination process between distance and DOCRs, at both the near- and far-end in the typical topological grid and with DGs in working order.


Author(s):  
Amir Alipour ◽  
Christian Alexander C. Asis ◽  
Jefferson Joseph P. Avanzado ◽  
Michael C. Pacis

Sign in / Sign up

Export Citation Format

Share Document