Anomaly detection algorithm based on life pattern extraction from accumulated pyroelectric sensor data

Author(s):  
T. Mori ◽  
R. Urushibata ◽  
M. Shimosaka ◽  
H. Noguchi ◽  
T. Sato
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5200
Author(s):  
Donghyun Kim ◽  
Gian Antariksa ◽  
Melia Putri Handayani ◽  
Sangbong Lee ◽  
Jihwan Lee

In this study, we proposed a data-driven approach to the condition monitoring of the marine engine. Although several unsupervised methods in the maritime industry have existed, the common limitation was the interpretation of the anomaly; they do not explain why the model classifies specific data instances as an anomaly. This study combines explainable AI techniques with anomaly detection algorithm to overcome the limitation above. As an explainable AI method, this study adopts Shapley Additive exPlanations (SHAP), which is theoretically solid and compatible with any kind of machine learning algorithm. SHAP enables us to measure the marginal contribution of each sensor variable to an anomaly. Thus, one can easily specify which sensor is responsible for the specific anomaly. To illustrate our framework, the actual sensor stream obtained from the cargo vessel collected over 10 months was analyzed. In this analysis, we performed hierarchical clustering analysis with transformed SHAP values to interpret and group common anomaly patterns. We showed that anomaly interpretation and segmentation using SHAP value provides more useful interpretation compared to the case without using SHAP value.


2016 ◽  
Vol 22 (5) ◽  
pp. 1623-1639 ◽  
Author(s):  
Raihan Ul Islam ◽  
Mohammad Shahadat Hossain ◽  
Karl Andersson

2012 ◽  
Vol 24 (5) ◽  
pp. 754-765 ◽  
Author(s):  
Taketoshi Mori ◽  
◽  
Takahito Ishino ◽  
Hiroshi Noguchi ◽  
Tomomasa Sato ◽  
...  

A life pattern estimation method and its application to anomaly detection of a single elderly are proposed. Our observation system deploys some pyroelectric sensors in an elderly’s house and monitors and measures activities 24 hours a day to grasp residents’ life patterns. Activity data is successively forwarded to the nurse operation center and displayed to nurses at the center. The system reports status related to anomalies together with the basic activities of elderly residents to the nurses, who decide whether recent accumulated data expresses an anomaly or not based on suggestions from the system. In the system, residents whose lifestyle features resemble each other are categorized into the same group. Anomalies that occurred in the past are shared in the group and utilized in an anomaly detection algorithm. This algorithm is based on an “anomaly score.” The score is figured out by utilizing the activeness of the house’s elderly resident. This activeness is approximately proportional to the frequency of sensor response within one minute. The anomaly score is calculated from the difference between activeness in the present and in the past averaged over the long term. The score is thus positive if activeness in the present is greater than the average in the past, and the score is negative if the value in the present is less than average. If the score exceeds a certain threshold, it means that an anomaly event has occurred. An activity estimation algorithm is also developed that estimates the basic activities of residents such as getting up in the morning, or going out. The estimation is also shown to nurses with the anomaly score of residents. Nurses can understand the condition of elderly residents’ health by combining the information and planning the most appropriate way to respond.


2018 ◽  
Vol 18 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Jong-Min Kim ◽  
Jaiwook Baik

Author(s):  
Cong Gao ◽  
Ping Yang ◽  
Yanping Chen ◽  
Zhongmin Wang ◽  
Yue Wang

AbstractWith large deployment of wireless sensor networks, anomaly detection for sensor data is becoming increasingly important in various fields. As a vital data form of sensor data, time series has three main types of anomaly: point anomaly, pattern anomaly, and sequence anomaly. In production environments, the analysis of pattern anomaly is the most rewarding one. However, the traditional processing model cloud computing is crippled in front of large amount of widely distributed data. This paper presents an edge-cloud collaboration architecture for pattern anomaly detection of time series. A task migration algorithm is developed to alleviate the problem of backlogged detection tasks at edge node. Besides, the detection tasks related to long-term correlation and short-term correlation in time series are allocated to cloud and edge node, respectively. A multi-dimensional feature representation scheme is devised to conduct efficient dimension reduction. Two key components of the feature representation trend identification and feature point extraction are elaborated. Based on the result of feature representation, pattern anomaly detection is performed with an improved kernel density estimation method. Finally, extensive experiments are conducted with synthetic data sets and real-world data sets.


Sign in / Sign up

Export Citation Format

Share Document