Contextual classification of 3D laser points with conditional random fields in urban environments

Author(s):  
Yan Zhuang ◽  
Yisha Liu ◽  
Guojian He ◽  
Wei Wang
Author(s):  
L. Albert ◽  
F. Rottensteiner ◽  
C. Heipke

Land cover and land use exhibit strong contextual dependencies. We propose a novel approach for the simultaneous classification of land cover and land use, where semantic and spatial context is considered. The image sites for land cover and land use classification form a hierarchy consisting of two layers: a <i>land cover layer</i> and a <i>land use layer</i>. We apply Conditional Random Fields (CRF) at both layers. The layers differ with respect to the image entities corresponding to the nodes, the employed features and the classes to be distinguished. In the land cover layer, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Both CRFs model spatial dependencies between neighbouring image sites. The complex semantic relations between land cover and land use are integrated in the classification process by using contextual features. We propose a new iterative inference procedure for the simultaneous classification of land cover and land use, in which the two classification tasks mutually influence each other. This helps to improve the classification accuracy for certain classes. The main idea of this approach is that semantic context helps to refine the class predictions, which, in turn, leads to more expressive context information. Thus, potentially wrong decisions can be reversed at later stages. The approach is designed for input data based on aerial images. Experiments are carried out on a test site to evaluate the performance of the proposed method. We show the effectiveness of the iterative inference procedure and demonstrate that a smaller size of the super-pixels has a positive influence on the classification result.


Author(s):  
T. Novack ◽  
U. Stilla

In this work we focused on the classification of Urban Settlement Types (USTs) based on two datasets from the TerraSAR-X satellite acquired at ascending and descending look directions. These data sets comprise the intensity, amplitude and coherence images from the ascending and descending datasets. In accordance to most official UST maps, the urban blocks of our study site were considered as the elements to be classified. The considered USTs classes in this paper are: Vegetated Areas, Single-Family Houses and Commercial and Residential Buildings. Three different groups of image attributes were utilized, namely: Relative Areas, Histogram of Oriented Gradients and geometrical and contextual attributes extracted from the nodes of a Max-Tree Morphological Profile. These image attributes were submitted to three powerful soft multi-class classification algorithms. In this way, each classifier output a membership value to each of the classes. This membership values were then treated as the potentials of the unary factors of a Conditional Random Fields (CRFs) model. The pairwise factors of the CRFs model were parameterised with a Potts function. The reclassification performed with the CRFs model enabled a slight increase of the classification’s accuracy from 76% to 79% out of 1926 urban blocks.


2015 ◽  
Vol 53 (2) ◽  
pp. 659-673 ◽  
Author(s):  
Thorsten Hoberg ◽  
Franz Rottensteiner ◽  
Raul Queiroz Feitosa ◽  
Christian Heipke

Sign in / Sign up

Export Citation Format

Share Document